JAN-ERIK SIGDELL
R,

A mathematical theory

for the capillary

artificial kidney




The diffusion of a solute from a liquid
flowing in a capillary tube is studied
under different conditions. Starting with
simple cases of plug flow and infinite
permeability of the capillary wall, the
treatment proceeds to the case of Poi-
seuille flow and limited permeability of
the wall. In the analogous problem of
heat transfer, this corresponds to a ge-
neralization of the Graetz problem to
the case of a limited heat conductivity
of the wall of the tube. Furthermore the
approximative solution of Lévéque to
the Graetz problem for low flows or
short distances from the inlet end is
generalized analogously. Finally a more
general discussion of the case of a va-
rying concentration outside the capil-
lary follows. It is found that only one
or two terms of the exact series solution
need to be considered. In cases where
more terms would be needed, the gene-
ralized Lévéque solution can be used
instead. Therefore numerical calcula-
tions are not too difficult in themselves
and diagrams of eigenvalues and coeffi-
cients greatly simplify practical appli-
cations. Optimization of the capillary
dialyzer, the effects of ultrafiltration and
recirculation and the relation to the
total membrane area are discussed ad-
ditionally. The mathematical treatment
of the generalized Graetz problem is
carried to much detail. Mathematical
proofs are given for such things as the
absolute and uniform convergence of
the series solution. Of special interest in
this respect is that the negligibility of
the second axial derivative in the basic
equation is proven mathematically,
probably for the first time (hitherto
authors refer to physical reasons only).
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1 Introduction

Thete ate several reasons to expect a considerably better petformance of a capillary
dialyzer, where the blood (ot the fluid to be dialyzed) is led through a large number
of thin capillaries with semipermeable walls, as compared to other configurations
of artificial kidneys which use sheets of membranes. Therefore some attempts
have been made to construct such dialyzers. The true capillary artificial kidney
employs true capillaries, i.e., a large number of separate, small diameter circular
tubes of semipermeable material, connected in parallel, and not «capillary»
channels formed, e.g., by folds of a membrane sheet. Here the petformance of a
true capillary kidney will be studied by theotetical analysis. The diffusion pro-
blem involved is related to the GRAETZ problem of heat conduction from a fluid
flowing in a tube [11], but here the problem is complicated by the fact that
the limited permeation of the tube wall has to be considered — the GrRAETZ solu-
tion assumes a tube wall of (approximately) infinite heat conductivity; assuming
an infinite permeation in the tube wall would here result in too rough an ap-
proximation.

Earlier studies. A few authors have been studying the performance of the capillaty
kidney, using simplifying assumptions. The analysis presented here is considerably
more exact since such simplifying assumptions have been avoided to any extent
practically possible.

One of the eatlier works approaching a true capillary artificial kidney was pre-
sented by Twarpowskr in 1964 [40]. He constructed a dialyzer with four parallel
units of 100 cellophane tubes each, 50 cm long and of 1 mm internal diameter.
He also performed a calculation of the petformance in general terms, not especially
related to the capillary structure since it simply relates mean concentrations on
both sides of any membrane in an approximative way.

Previous attempts to construct capillary dialyzers resulted, as TwaRDOWSKI calls
them, in «pseudocapillary» devices, utilizing membrane sheets pressed between
grooved plates such that «pseudocapillary» ducts formed (Kunn, SAviNo, ZosIN,
LoNGMORE — see [40]).

A more sophisticated attempt was that of STEWART et al., published in 1964 [36].
This dialyzer concept was developed at The Dow Chemical Company and the
dialyzer is fabricated and sold by the Cordis Co., Miami, Fla. Some information
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on its construction and performance at prototype stages is given in [26], where
the theoretical analysis is based upon a theoretical study by MicrAELs [27], which
relates mean concentrations on both sides of a membrane in a somewhat more
detailed way than in [40]. The dialyzers described in [26] have between 3200 and
14000 cellulose capillaries of internal diameters between 0.17 and 0.23 mm and
lengths between 11.2 and 16.4 cm.

Some other attempts to the construction of capillary dialyzers are presented in the
references [2, 14, 16].

A theoretical approach to the analysis of dialysis in an elliptical conduit was
presented by Yoper [41] [cf. 30] in 1963 and is applicable, within its limitations,
on a capillary arrangement. Again, the mean concentration in the conduit is
considered, neglecting the effects of the radial concentration variations like in the
above mentioned analytical attempts.

An extensive work on capillary artificial kidneys is performed at the Monsanto
Research Corporation, Dayton, Ohio [32]. The report [32] shows remarkable
progress in techniques for the construction of capillary dialyzers, but uses the
same theoty as used in [26]. Prototypes evaluated ## vivo have between 350 and
8000 heparinized polyacrylonitril capillaries, 6 or 15 c¢m long, with 0.25 mm
internal diameter and 0.05-0.1 mm wall thickness.

Hence, as this brief review indicates, the theoretical studies of dialysis with
capillary devices has hitherto relied on simplifying assumptions and approximative
expressions, far below the level at which the equivalent problem of thermal
diffusion from circular pipes (in heat exchangers, for example) has been studied.
For excellent reviews of the theories of thermal convection, [8] and [39] are re-
ferred to. None of those theories does, however, treat the case of a limited wall
conductivity for the heat — in practical cases it might well be appropriate to treat
the tube wall as infinitely conductive. Such an approximation is, though, too
rough in the corresponding dialysis problem (and this may perhaps be the reason
why theories of thermal convection have not been «translated» to the dialysis
from a capillaty). In the present work, a simple and useful way to treat the influence
of the limited wall permeation for diffusion is applied and the error of the ap-
proximation involved is investigated mathematically. The method for taking the
wall permeation in account was found to be the same as the one used by GRiMsrRUD
and Bass [12] in the analysis of a conventional membrane sheet dialyzer. In the
capillary dialyzet, studied in the present work, the mathematics are different and
are here treated in a detailed and stringent way so as to provide a firm mathemati-
cal basis. The theory developed should be of interest also for applications to
thermal convection problems involving circular tubes when a consideration of the
effect of the wall conductivity is desited. Of special interest is the generalization
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of the LEvEQUE approximation, presented in Chapter 11, as this allows for simple
treatments in cases whete the exact seties solution converges slowly.

Theories of conventional «flat conduit» dialyzers are somewhat casier and have
been catried a lot further than for capillary dialyzers. An excellent example is given
by ref. [12].

The advantages of capillary artificial kidneys and the general requirements on
artificial kidneys are treated often enough in literature (see references) so that a
repetition appeats unnecessary here, especially as the scope is the mathematics of
the device. In brief, the capillary kidney, through its geometry, allows for a better
fulfilment of the requirement of the least possible blood space volume for a
given performance (approximately the same as requiring the smallest blood
volume with a given membrane sutface area — for a capillary kidney the clearance
is not exactly, but to a reasonable estimation, proportional to the membrane area).
General reviews on hemodialysis and artificial kidneys are given in the references
{7, 9, 15].

The theory developed here should be of potential interest also for studies of
diffusion exchange through the walls of capillary blood vessels in body tissues.
Tn the following, the diffusion out of a single capillary will be studied in a sequence
of cases, going from the simplest case to the more exact study, which considers
the velocity profile and the wall permeation. This will first assume zero concen-
tration outside the capillary, so that the maximum performance results., The case
of limited wash-off of the diffused substance outside the capillary will then be
discussed.

The main part of the Chapters 1-13 of this work was done at J.R. Geigy, Ltd.,,
from February 1969 till April 1970. I am indebted to the mapagement of Ciba-
Geigy, Ltd., Basle, Switzerland, for permitting the publication and, especially, to
Dr. P. MosEr for invaluable aid with computet calculations and to Dr. R. Vox-
perwAHL and Professor H. Wirz for pleasant stimulation.

The purpose of this work is to establish a well founded mathematical theory fot the
capillary dialyzer, since such a theory has hitherto been lacking (except for mote or
less rtough approximations, indicated above). The growing interest forsuch dialyzers
leads the author to hope that this theory will fulfil a certain need. Much to his
regret, experimental verification has not been possible because (for certain reasons)
facilities herefore were no longer available to him when the theoretical work had
reached a state where such a vetification would have been at place. Still, the well
known (established and proven) theory of diffusion forms a firm enough basis,
together with a careful mathematical treatment, so that such a verification would
have been rather for the sake of completeness only. Therefore the real need fora
confirmation appears mote an academic than a practical question in this case.



2 The basic equation

The diffusion equation is in the literature usually given as referred to a specific
coordinate system. It may be of interest to state the basic equation in general
terms, not presupposing a specific frame of reference. A general derivation is
quite simple and will here be given as a mathematical introduction.

Fig. 1. An arbitrary volume in the flow field

The easiest derivation of the basic diffusion equation is achieved through the
EuLerian approach. Consider an arbitrary stationary volume 17 with the surface
§ in the flow field, as drawn in Fig. 1. To be studied is the diffusion of a single
dissolved compound, the relative volume concentration of which will be denoted
by C (C=1 meaning 1009, concentrafion). Bold face types ate used for vector
notations: v is the velocity of the flowing fluid, J is the diffusion flux and dS is an
oriented surface element of § (dS L S, directed outwards). Any increase of the
solute in 17 is caused by inflow through S:

f%gdv=—4§(cV+J)-ds, )
Vv S

ot, applying the theorem of Gauss:

aait:dvz—f V- (Cv+]) dv, @)
v Vv

where the « del» or «nabla» symbol ¥/ is used: \V =grad, V- =div, V2=V VY =
div grad. ‘
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Equation (2) must hold for any V (as long as the volume does not contain an
essential boundary sutface), therefore

oC
V(v D+ =0 ©
For the carrier fluid one has, analogously:
d
~[Tav=—§f1a—v-n-as, @
v S

because the volume left behind by the dissolved compound, as it is shifted through
diffusion, cannot remain as a «hole» but must be filled up with carrier fluid
(solvent). As before we get from (4):

V[ —Ov—J1— 5 =0 ®)

Eliminating J and 8C/o# from (3) and (5), of course, results in the equation of
continuity:

V- v=0. (6)
Since
V- (Cv)=v-VC+CV v, (7
one gets from (6) and (3):
oC
v-VC-|—'V-]—|——6t-=0. (8)
Now, Ficks first law of diffusion states
J=—DVG, ©)

where D is the diffusivity or diffusion coefficient. Hence, from (8) and (9):
v-VC+%(1:_:=DV2C. (10)

The left side here is the «total time derivative» or the «time derivative following
motion», which would have come out more directly if 2 LAGRANGEan derivation
were used. Such a derivation is a little less easy to visualize, but, for completeness,
the starting equation may be set up:

J(aa_f+v-vc) dV=—ffJ-dS, (11)
S

v
where the left side is the increase in the (now moving) volume 1/, as given by the
«total time derivative», including the effect of the movement of § along with v,
and the right side is the inflow through § trough diffusion, whereas there is no
more 2 fluid flow through S. The derivation of (10) then follows analogously.
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The full specification of a diffusion problem requires, besides (10), a specification
of the conditions at a given boundary for the volume studied as well as the condi-
tion at a given time (initial condition). In a quite general case the boundary condi-
tion is of the type aC + BV C"#= 3, where «, B and & are constants, holding on a
given boundaty surface, which may have separate parts. # is a normal unity vector
for the surface (of unity length, everywhere at right angles to the surface). The
initial condition is generally a specification of C at a given time, usually defined as
t==0.

3 A simple limit case - uniform (bulk or plug) flow and infinitely
permeable wall

This case has been treated in literatute for the equivalent thermal problem, but
with neglection of the term 82C/d32 in (12) below. The exact solution is not much
more difficult and is derived in this chapter.

As the capillary structure is cylindrical, it is useful to introduce cylindrical co-
ordinates, in which (10) takes the form

2 2
Vr§9_+vz2_C_+%_C=D(§_§+aC laC)
A t

g N 12
or 0z2 Or2 t Ot (12)

assuming fully developed straight tubular flow already at the entrance to the
capillary so that there is rotational symmetry (independence of the angular co-
ordinate). For application to a capillary kidney one may to a very good approxima-
tion assume the stationary case 8C/o¢=0, since the rate of reduction of blood
concentration of compounds to be excteted is very slow, compared to the «dwell-
ing time» of blood in the kidney. A further assumption is negligible loss ot gain
of fluid through the capillary walls (the case of ultrafiltration will be discussed
later, still the loss of fluid due to ultrafiltration occurs at a rate much slower than
blood transport time and therefote is negligible when studying concentration
profiles — a certain effect on the wall permeability will, however, be found later).
This means (for a uniform capillary) that »,=0. The task is therefore to solve
the equation

V?E:D(aic A 1%) (13)

0z 0z 0r2  rot

putting », =, assumed constant.
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In this first, simple case the boundary conditions ate

C=C,, z<0, (142)
C=0,t>r1,2>0, (14b)
a—(z =0, =0, (14c)
or

for zero concentration outside the capillary; here Cl is the initial concentration,
7 =0 the inlet end of the capillary and ry the inner radius of the capillary wall.
(14¢) follows from symmetry. To solve the equation according to the method of
FOURIER, one sets as an intermediate solution to (13) alone:

C(t,z) =Fx(r) Fu(2), (15)
giving, with (13):
vE; —DF; D Fifr+Fd

A 16
i E (16)

where A must be a constant. The Fr-equation in (16) gives

ro-an(f—3) on(l-2) o

whete 4 and B are constants and [, and Y, the BEssiL functions of zero order
and of first and second kind, respectively. Obviously, F; must be limited for |7| <
7 and therefore B = 0. This automatically fulfils (14¢), but (145) requires

2
A= —D ("_“) , (18)
I
where o, £=1.2, . . . ad infinitum, ate the positive zeroes of J,. The special case
2= 0 does not fulfil the requirements, since this gives
Fr(r)=Alnr--B, (19)

which is not limited for |r| < 1 unless A=0, in which case (144) also requires
B=0.
Hence the solution to (13) and (14) is a series of solutions (15):

c= gAk(z) Jo (pkril), | (20)

fitting (144), since Jo(psr/r1) forms an orthogonal system for |r| << ry. Putting this
into (13) or (16) gives

2
vAL=D [A;;* (P_k) Ak], (21)
I
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with the solution

Aw(z) = Aok exp [—z [V(%)er (i_l“)2 — %]} 22)

(a solution with positive éxponent is rejected since one must have C'—0 as ¢ —-c0).
To fulfill (144), one has, from (20) and (22):

Co=3 Aox Jo (px ) 23)
k=1 1
from which
2C,
ok— (24)
ex J1(px)

due to known properties of /, and the orthogonal system [o(prr/r1) [38]. /1 is the
BEesseL function of first order and first kind. The solution to (13) and (14) thus

finally becomes

e, 8 Lo o (Vo) + () )}

Mote interesting for practical purposes is the mean concentration

Cz)= iz f 2re C(r,2) dt, (26)
Ty
0

for which (25) gives

— » 1 v\ /pKk\2 v
C=4Co% exp{—z V(ﬁ) () S 27
0% Xp{ [ op) ") " @)
The termwise integration, leading to (27), is allowed because the absolute values
of the individual terms in (25) for large £ are
'rczk)

1
<C const. — €Xp (—__
k 1

(28)

[17] which shows that the series (25) is absolutely and uniformly convergent.
The larger the 4, the faster the terms in (25) decay with g, due to the exponential
functions. For larger £ one may then approximate C with the first terms in the
series (27). For sufficiently large g, the first term alone is sufficient as approxima-
tion of C (cf. Chapter 11).
If  is such, that one may approximate C with the fitst # terms in (27), and one for
&< n also has /2D > gx[r1, one can further approximate by setting

~ noi o Dz (px\?

Cn4CaZ - exp [ g ( ) ] (29)

1
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which applies in most practical cases. The latter approximation in the exponent
also results when 82C/oz? is neglected in (13), as is usual in literature. In a later
study the latter simplification will be used but it will then also be shown that it
leads to a negligible error in almost all practical cases.

For a non-zero concentration Cy outside the capillary, (25) still holds if C is re-
placed by C-C; and C by C'o-C1, as is obvious from superposition. This assumes
a constant C; but may also be applied as approximation when C varies sufficiently
slowly with g, if the mean value of C); over g is inserted. For more general cases
the solution may be obtained in analogy to [39].

4 Another simple case — the opposite limit case of very high wall
resistance to diffusion

Here one may assume an arbitrary velocity distribution v(r) in (13) and calculate
the mean concentration C in (13) befotre solving the equation. In this case the
concentration varies very little over the cross-section, C{t,z) ~ C(z). Therefore

Iy
C 2C 2
acNDac R zm(ach}ac)dr,

¥ A o - 30
va or2 t Ot 30)

oz2 Tt

0
with the mean velocity # defined in analogy to (26). This approximation is bettet,
the higher the diffusion resistance of the wall. In the limit (infinite resistance) it
becomes an equality.
The integral term in (30) is

I, I
2 2 2 cC 2 roC
—fr(gg+1§)dr=_fd(r_):__] , (31
r§ orz ' ror 1} or £y Lot drr,
0 0

using (14¢). Because C'aC, the boundary condition is

D§ ~ —~C, t=1, (32)
or

for zero concentration outside the capillary. Here v is the permeation of the capil-
lary wall (cf. Chapter 6). Combining (30), (31) and (32), it follows:
_oC _aC 2 -

—~D _———~vC, 33
Vaz 0z2 IIT ( )
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from which

e

since (14a) still holds and the term with a positive exponent must be rejected in
order to have C—0 for g—c0.

In practice one often has #/2D >l/2nyr1 , in which case (34) becomes

~ 2

Ca Co exp (— _lz) (35)
VI

which is also obtained if 82C/ég? is neglected in (30) (cf. [22]). Again, (34) applies

to a constant concentration C;, instead of zero, outside the capillary if C is re-

placed by C-C) and C by Co-Ch.

5 Capillary with infinitely permeable wall and PoiseurLLe flow

Newtonian fuids in laminar flow within a tube have a PorseuiLLE distribution of

the velocity:

Vp— V=27 [1_(i)2], ] < £,

9]

(36)

Vr:(),

where 7 is the mean velocity
51

V= * 2wty dr. (37)

mri
0
To obtain the concentration distribution in this case, one may consult literature.

With the notations introduced in this work inserted, one finds from [18] in the
case when 92C/0z2 is neglected [see (13)],

_C_ — 1.477 e—3.658 Dz/%17 R (51, i) —0.810 ¢—22.178Dz/7r{ R (52, i)

o 1 fy

40,385 e—s3.0s D27 R (p,ﬂ, i) — . (38)

Iy
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Here R(B,x) is a solution of

d2R = 1dR

AR 2(1 —x2)R =0 3
Crt S TEI—OR=0, (39)
which gives
R(B,x) = ij‘,oanxzn, (40)
with
Bo = 1,
2
B,
(41)
2n = (21‘1)2 @2(]3211—4 —‘an—z):

Bx in (38) is the &:th positive root of

R(@,1)=0, (42)
ie., B1=2.70436, B = 6.6791, B:=10.3, . .. according to [8].
In [33] an approximative general relation is detived as Br ~ 4k — 4/3, the better the
higher &. This solution, given by (38) —(42), was first derived by Grarrz [11].
When the velocity distribution is no more uniform, the «mixing cup concentra-
tion» Cy is of more interest than the mean concentration C according to (26). In

steady state this is the concentration obtained when the fluid is collected and
mixed in a «mixing cup» at the output end of a tube of length g:

Con(z) =

! f 2nr v(r,7) C(t,7) dr. (43)

eV
0

In the previously studied cases one had Cn= C; in the first case exactly since »
was constant, in the second case approximately since C was almost constant with 7.
According to [18], one finds for the «mixing cup concentration»:

C_m —(0.820 e—3.658 Dz/vrf 4-0.0972 c—22.178 Dr/er

o]

10.0135 e—s3.05Dz/FrA - .. (44)

A useful graph of this solution can be found in [18] (his Fig. 22—6).
After having studied these three simpler cases, a study considering the effect of
the limited wall permeation is at place. In a first following case a uniform velocity

2 Sigdell



18 Diffusion in the capillary wall

distribution will be assumed, which is of interest for estimations since the solution
then contains well known functions and therefore is easier to handle. An exacter
study must consider that the blood flow in a small vessel has a velocity profile
which is almost parabolic (PorseurLLE flow — this holds well enough down to very
thin capillaries, as discussed in a later chaptet, and also for the mean velocity in a
linear tube like an artificial kidney capillary in the case of pulsatile flow).

The case of turbulent flow within the capillary will not be treated as such a flow
condition should be avoided, because it increases the risk for hemolysis and
clotting. The case of turbulent flow (at thermal diffusion) with an infinitely con-
ductive wall is treated in [19].

Betfore proceeding further with the cases mentioned, the diffusion in the capillary
wall will be studied in the following chapter.

6 Diffusion in the capillary wall

In the simplest case, the plane case with diffusion through a membrane with
constant concentrations on both sides as sketched in Fig. 2, the diffusion equation
is "’ =0, which gives

C=Cw(1—X), (45)
h
with notations defined in the Figure. The corresponding diffusion flux is
dC, DuCy
— D, o= : 46
] T2 At v (46)
¥
A
h C=0
y 77
[ - X
0 C=C,

Fig. 2. Diffusion in a plane membrane
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where D,, is the diffusion coefficient for the wall material and j the unity vector
in the y-direction. This indicates that one may define a permeation y of the mem-

brane as
so that
Dy
= 48
Y= (48)

in this case.
In a cylindrical geometry on has in an analogous case

2C 1¢C

ST DI =0, 49

Or2 * r ot *9)
which with the corresponding boundaty conditions €’ —Cypatr=r; and C=0

at r=r; (outer radius of the wall) gives

1
c—c, ol (50)
In ra/1s
in the wall, which leads to the permeation
Dy |
S 51
v 11 In £a/1y S

from the definition J=+vCywf, in analogy to (46). Fot ro—ry="h <ry,re this re-
duces to (48).

A more detailed discussion of diffusion in the capillary wall will be given in
Chapter 12.

If the capillary wall is very thin, as compared to the radius of the capillary, one
easily realizes that axial diffusion within the wall is negligible. In Chapter 12 is
actually shown that this holds even for quite thick walls. Therefore the influence
of the wall can generally be given as

Ju(2)=7v[Co(2) —C1(2)] &, (52)

where Jy is the local diffusion flux through the wall, Cy the concentration at the
inside of the wall and C; the concentration at the outside. As shown in Chapter 12,
the variation of Cy, with g in the case Cy =0 does not ruin the validity of (52) and
therefore this relation will hold also for a similar smooth variation of C (such as
an exponential variation).

Below, this will be applied on the calculation of the concentration inside the
capillary under consideration of the limited wall permeability. Thereby a considet-
able simplification is reached. A more stringent analytic solution from solving



20  Limited wall permeation and uniform flow

partial differential equations in two regions — blood and wall (and possibly also
in a third region outside the capillary) would become extremely complicated and
hardly useful for practical applications. The results in Chapter 12 will verify the
good validity of the simplification thus introduced. In this way the problem is
again reduced to a generalized STURM-L1oUVILLE problem, where the wall pet-
meation only enters in the boundary condition. (The term «generalized STURM-
LIouvILLE problem» is used because the original STURM-L1oUVILLE problem only
allows for coefficient functions which neither become zero nor infinity inside the
actual interval or at its boundaries).

‘The discussion was here based on an idealized membrane with also microscopic
homogeneity and with a linear concentration profile in Fig. 2. Obviously, though,
(52) holds for any membrane structure, with an appropriate value of y — the
effective ot equivalent value,

7 Limited wall permeation and uniform (bulk, plug) flow

Hete (13) is to be solved with the boundary conditions

C=0C,, z<0, (53a)
oC Y

T =—_1C t= 53b

o D I=1 (53b)

where (534) follows from the above discussion in Chapter 6, assuming zero con-
centration outside the capillary wall. Putting C(r,g) = Fy(r) Fx(g) one finds in the
same way as in Chapter 3:

cmgonsef)en [ [V + ()} o0

where a5, £=1, 2, .. ., are constants and s the positive roots of
T
o) =5J () (55)

resulting from (534) when the relation fo= —/; is used [17].
This is a Fourter-BEssEL series of the second kind [38] for which (534) gives
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T

J t]o (sk rr_l) de 2l
e = a e e
6J t]3 (sk r_1) dr
or, using (55),
o, (57)
sic 1) [1+(Y—-:“) |

to be inserted in (54). (54) with (57) approaches (25) as y—c0.

For practical use it is of interest to find an approximative expression simplifying
the application of these equations. In practical cases (for not too short capillaries)
it is to be expected that C can be sufficiently well approximated by the first term in
(54) alone (cf. Chapter 11). For this reason one may search for an approximative
solution of (55) for the first eigenvalue 5; in a more handy form. This may be
found by approximation of Jo(x) and Ji(x) in the range 0<{x<p,, in which 5
falls (py is the first positive zero of Jo). Near zero, x a0, one may approximate
these functions by their power series, using only the first terms. Instead of adding
more terms, the range of applicability of the approximations may be increased by
altering the coefficients slightly, at the cost of a reduced but still acceptable ac-
curacy at the origin. Doing this in such a way that exactness is required for x=0,
1 and 2, one finds

Jo(x) v 1 —0.2484 x2+ 0.0136 x4, (58a)
xJ1(x) & 0.4907 x2—0.0506 x°. (58b)

The BesseL functions themselves and their approximations are drawn in the dia-
grams of Fig. 3 and Fig. 4, showing good approximations within the whole
actual range (py=2.4048 [17]).

These apptroximations give, with (55),

s v 4.84 110506 w—)/1+0.169 w4 0.0304 w* (59)
14 0.269 w

where w=1yry/D. For very small » one has, from the true series expansions, the
approximation s 2w.

For large £, one has s~ p1x, Where piy are the zeroes of [j, as is seen from (55).
Using known approximations of pix and Jo(p1x) [17] one finds that the absolute
values of the individual terms in (54) for large £ are
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4

1.0 =
094
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0 ! 2 Approx. in(58a)
1,0
Fig. 3. Comparison of the BrsseL function Jo(x) with its approximation in eq. (582)
A

l]l(ll

Approx. in (581)

Uy Tr™rvVv~—Vr 77y T yprrir o T Iy rgr ey X

0 1 2

Fig: 4. Comparison of the function x/i(x) with its approximation in eq. (584)
k —_—
<< const. w M Vk e—ﬂZk/rl, (60)
W2+ n2k2

showing that the series (54) is absolutely and uniformly convergent. Therefore
the seties can be integrated termwise to give the mean concenttation C'=Ch:

= ® 1 viE o sk\®2 ¥
Cod4Co¥—  expl—z l/(_) (4) — YL et
1§1s§(1 + sffw?) P { [ 2D T 1 2D ©1)
where, again, w = yri/D. For very small » this gives, using s &~ 2» and assuming
a large v (for simplicity):
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= x =values from (59}

n
Ifrryryrvyoy¥yrryrorgererpyrvEad

l L] L]
0 i 2 3 4 5 ] 1

Fig. 5. Comparison of the exact solution 5;(») of eq. (55) with the general approximation
in eq. (59) and the special approximation si= 2 for small »

Cay Cy e—22wD/vi - 4C, — e—3.82Divii | (62)

w2
3.84

since then 3~ p12A 3.8, etc. As w—0 this reduces to the first term, which is
identical with (35).

Again one may use only the first terms in (54) for a sufficiently large 2, as men-
tioned above. If g > ry and vry » 26D < 4.8 D one may actually write

4C,
K1+ stDYych)

Cr

e—Dastford, (63)

where 5; may be taken from (59). A graph of s;, compared to the approximations
(59) and 53 & 2w is shown in Fig. 5. It seems to be a good rule to use (39) for w>
0.2 and st~ 2w for » <0.2.

As in the previous cases, the simplified exponents in (62) and (63) correspond to
neglecting the second g-derivative of C'in (13).

The coefficient before the exponential function in (63), denoted as

9 4
 si(1 + siD¥yed)’

(64)

is drawn in Fig. 6.

As before, (54) and (61) are valid also for a constant concentration Cy % 0 outside
the capillary if C is replaced by C—C; and Co by Co —Ci.
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8 Limited wall permeation and PorseunLe flow

In this case the problem is to solve (13) with the velocity distribution (36) and the
boundary conditions (53). In order to avoid substantial mathematical difficulties,
the term 92C/[og? will be neglected in (13):

)21 6C 2C 1oC
29 |1— (=) | —=D{=—+-+) 65
v [ (rl) 0z (arz + r ar) )
The neglection of this term will be discussed in Chapter 10.
With the same technique as used in earlier chapters, the solution

C= § arPy (i) exp [_IE (&{) 2], (66)

k=1 13} 2% \ry
results, where Py(x) is a solution of
xPi+ Pi+ pE x(1 —x%) P=0, (67)

using the symbols " and " for derivatives with respect to x. px, £=1,2, ..., in
(67) are such that
—w Pp(1) =Pu(1), (68)
where
Y0
W= -, 69
5 (69)
In the next chaptet it will be shown that the system {Pk} forms a closed orthogonal
set. The proof will verify that the coefficients ay ate given by
( 1

ax = Co x(1 —x2) Pi(x) dx, (702)
N
0
2
o LR aP] , (70b)
2px Lox Op ox pl,_p, |
x=1

which fulfils (53#). Here P symbolizes the general solution of (67) with an arbitrary
patameter p instead of px.

The integral in (704) can be calculated as follows, using (67):
1 1 1
1 ’
, pk pi
0 0

0

P

: 71
Pk
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Again, and in the following, ’, "/, etc., are used to indicate detivatives with respect
to x. In some cases derivatives with respect to p also arise [as in (70)] and the
complete notations will then be used for all derivatives to avoid confusion.

It should be made clear that the Py used here are not the same as the functions
R(Bx,r[ry) used in Chapter 6 and [18], although they satisfy identical differential
equations. The difference lies in the boundary conditions and therefore in the
eigenvalues and leads to a different kind of orthogonal system in the present case.
The difference is analogous to that between a FOURIER-BESSEL series of the first
kind (cf. Chapter 3) and of the second kind (cf. Chapter 7). Nevertheless one may
use the series expansion for R, given in [18], which in an obvious modification for

Py gives: o
Pi(x) = Y] banx?n, (72)
n=0
where { be=1,
2
by= — 13;;‘,
(73)

b2n = p—ﬁ (bZn—4_b2n—2),
4n?2

As will be seen, this series expansion converges too slowly with respect to x to be
convenient for the calculation of the eigenvalues p. A somewhat different series
expansion for the Py, which is found to be more practical once it is detived, is a
power series with respect to py, the coefficients being polynomes in x. Of course
this is just a reorganization of (72), but an easier and direct way to find the coetfi-
cient functions will be shown below.

Putting o
Px= 3 pﬁm fm(x) (74)
a

m-=

one finds, from (67),
v 1 ’ % ” 1 ’
fot fot 3 pi™ [fm+ ~fat-(1 —xﬁ)fm_l] =0, (75
m=1 X
ie., by termwise identification,

fot+ 1fé= 0, (762)
X

£ L — (1 —x2) i, (76m)
X
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with the solutions [ fo=A, Inx+ By, (77a)

| fm=:— f )1; f x(1—x?) fm_y dx?, (77;n)

!
Since P must be limited when x—0, one has A,= 0. Integration of (77) also
yields logarithmic terms with arbitrary coefficients. For the same reason these
must be zero. This gives

fo=DBo, (782)
fi—B,—B, (’; —_l’fﬁf) | (78b)
=B by (}; B 1%1) B (4}-(;6 B 12).(;6 i 16%864)’ 75)

i.e., in general terms, om
fm=j§11<jx2j+ Ba. (79)

with constant coefficients K. In order to fulfil the symmetry requirement (14¢)
and in otder to standardize the functions, one desires

PO)=1, (802)
P/(0) = 0. (80b)
The first of these equations gives
S pinBo=1 (81)
m=0

and the second is automatically fulfilled. (81) can be satisfied independently of px
if one choses Bo=1 and By =0 for m>1. Now all constants are determined and
(77) forms an algorithm for the generation of the f-functions, where A, and all
integration constants are set to zero. This gives

fo - 1, (823)
fi=—0.25% (1 —0.25 x2), (82b)
£, =0.015625 x#(1 —0.555556 x2 4 0.0625 x*), (82¢)

fy= —0.434028 x6 10-3(1 —0.875 x2 4+ 0.2225 x* —0.015625 x%),  (82d)
fa—0.678168 x8 10-5(1 —1.2 x2+ 0.487778 x4 —0.0777551 x5+

+ 0.444444 x8 10-2), (82e)
fy= —0.678168 x10 10-7(1 —1.527778 x2+0.861111 x4 —

—0.220911 x84+ 0.0253702x8 —0.111111 x1° 10-3), (82f)
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In Appendix 1 it is shown that the series (72) is absolutely convergent for any py
and any x. Therefore one may reorganize the terms in (72) and still have an
absolutely convergent series with the same sum. One such reorganization is (74),
since this also generates a power series and both these series satisfy (80). [Making
integration constants zero does not «remove terms» from the power series as this
is done in order to avoid logarithmic terms which do not have such power series
anyway and would not satisfy (80)]. Therefore (72) and (74) are identical since a
function cannot have mote than one power series expansion. The algorithm thus
generates (72) reorganized after powers in pz in an easier and more direct way
than through using (73) and reorganize terms. This reorganized series will be
found useful below.

Since the two identical series are shown to converge absolutely for any real x and
any real py, they also converge uniformly for any complex x and any complex pr.
Therefore they may be integrated or differentiated termwise arbitrarily many times
and this with respect to x, as well as with respect to p when used in (70b).
According to (68), (74) and (82) one may now determine the first eigenvalue p; to 2
very good approximation as the first positive root of

-p"(0.421880-107 + w 0.926930-10%) +
+ p8(0.566862 - W 0.145445) 10-5—p8(0.450304+ w 0.144043) 10-3 +
+ p%(0.0182292 -+ w 0.00792101) —p2(0.25 - w 0.1875) - w — 0, (83)*

where » is defined by (69). One here has 0 < p;< 2.6974, whete the upper limit
(approached as »—o0) follows from Chapter 5. (83)also givesp, —2.7048as w—>o0.
If the pi-term in (83) is neglected, the first positive root instead approaches 2.697,
i.e. already a somewhat had approximation for large ». For smaller w, however,
higher powers of p may be neglected. Table 1 shows which powets have to be
retained for different » with a required accuracy — as derived empirically from
computer calculations.

Figs. 7 and 8 show p, as a function of » in log-log and lin-log diagrams. For very
small », (83) gives

ps~ 2w, (84)
which is also included in Table 1.
The FOURIER coefficients and higher eigenvalwes. Before calculating the FOURIER

coefficients #; in (66), it is useful to simplify the expression. (70) and (71) give

— 2 C, P(1) . (#5)
P opP 2P
o [5xp P axap)

oxp  dxoplpzye
Now (68) gives

* With only terms up to p® in (83), p1 (w = ) = 2.70436
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0P d ) o
& ap] TP = R, 60

from which, with (68) and (85),
2C,w

P Pa(l) [%‘-g] |
P="Pk

Adx —

&7

29

Table 1. Accuracy of simplifications of (83) for different w

Highest power of p Error in py < at w <
kept in (83) %
6 0.01 0.5
0.05 1.5
0.1 2.6
0.3 o0
4 0.01 0.08
0.05 0.2
0.1 0.3
0.5 0.7
1 1.3
2 2.6
5 30
5.35 o0
2 0.01 0.0005
ie. 0.05 0.003
0.1 0.006
V—W— 0.5 0.03
pi~ 4 1 0.07
v 2 0.15
10 1.7
15 00
p1Av zl/; 0.01 0.0001
0.15 0.001
0.5 0.02
1 0.04
2 0.08
5 0.2

10 0.4
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This expression is to be inserted in (66) and &w/0p for p=p; may be taken from
(83). P, follows from (74) and (82). For higher values of £ an approximative
treatment will be given below.

For practical applications, the «cup mixing concentration» Com, defined by (43),
is of more interest. Integration of (66) with use of (71) and (68) gives, with (87),

_ Dz (b
Can(z) =8 w? Co g CXPE ajj_’ (f‘) ] : (88)

2
Opdp—pu

'The termwise integration, which has been applied here, is justified by Appendix 2.

When »w =00, corresponding to p; = 2.705, the first term in (88) is, with (83),

Cn=0.82 C, e—3.658Dz/Fr§ | | (89)
in agreement with (44). When w ~ 0, (84) gives
Cpn & C, ¢—2Dzw/vr2, (90)

in agreement with (35).
To calculate dwjép at p= p, for use in (87) and (88) one may use (83) to a good
approximation:

0

ETW (—0.926930 p'*10°40.145445 p8 10-5—0.144043 p® 10-2+ 0.00792101 p* —
P

—-0.1875 p2-+1) = 0.421880 p® 10-6 —0.4534896 p? 10-1 4

-+0.2701824 p5 10-2—0.0729168 p3+4 0.5 p + w(0.926930 p? 10-7—

—0.116356 p7 10-4- 0.864258 p* 10-2—0.0316840 p*+0.375 p). (91)

For further eigenvalues (83) is too approximative and one may instead derive

another expression from an approximation for P(x) at xa 1 according to [33]

(which is developed and used in this reference for the eigenvalues of the «Fou-

RIER- R»-series in Chapter 5, but may also be applied to the second kind «Fou-

RIER-P»-series appearing here):

rem 1 o (152 i G )0 ()
(92)

where y=1—ux and [ is the BesseL function of the first kind and of orders
indicated by the indices. With (68) and (92) one finds for the eigenvalue pg, £=
2,3, ..., the &: th positive root of

- pr  2n
~ —0.4593 p2/s |1 3 cotg|[— — —}|. 93
w pe [t oo =5
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A diagram for ps is given in Fig. 9, also showing a comparison between p, from
(83) and the first positive root of (93). This formula also shows that px—4/3+
4(k—1) as £#—c0 when w < 0.

For use in (87) and (88) one also finds, from (93),

W o2 1 0.62481 ps [1 + cotg? (E —Z—TC)] (94)

which, again applying (93), may be written as

Z_W ~0.83308 p?s 4 w (33 4 0.9069) 1-0.9873 wip-23, (95)
P p

to be used for pg, £=2, 3, .. ..
When w=00, (93) gives ps=6.667 in agreement with B, in Chapter 5 and with
(89) and (95) one finds for the first two terms:

Cun(2) = 0.82 C, e—3.658 Dz/v1} + 0,0971 C, e—22.2 D2/53 - ., (96)

in good agreement with (44). For # &~ 0 one finds, with (90), (93) and (95):
Cm(z) = Co e—2Dzw/3r} - 0.0207 w2C, e—14-2 D2/Fri - | (97)

in quite good agreement with (62) in the second term — it is to be expected that
the solutions of the cases in this chapter and in Chapter 7 approach each other
when »—0, because the velocity distribution has less influence, the lower the

w-value.

9 The functions P(p,x)

The eigenfunctions Py used in Chapter 8 are solutions of (67) with parameters py,
determined by (68). For a general discussion one may denote the parameter by p
and the solution by P(p,x). Two equivalent power series for this solution were
developed in Chapter 8 — a series in powers of x [(72), (73)] and a series in powers
of p [(74), (77), (81), (82)]. The functions P are closely related to the BEsseL wave
functions Jole,3,3) [28]; P is a special case of Jo with a=17p and B=p:

N o D o O 4\ (xp)s, 20
Pex=Sdppr=1—""4 g (HE) 2304(1+f>5)+"" ©8)

as is also found from the above mentioned series expansions.
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The P-functions are close relatives to the BesseL functions. It may therefore be of
interest to develop P in a series of such functions. First put £ = px and P(p,x)=
QO(p, px) and insert in (67):

1 2
Q'+, Q+(1-F) -0 (99)
g p
Trying [1]
Q= Zoan gn Ja(8), (100)
one finds that such a development can be realized with
ao == 1,
a1 = 0,
1
| = 5 (1o1)
n—I1 1
an = aAn-g —— dn-3,
np? 2np?

if one choses P(p,0)=0(p,0)= 1. For large » this means that an A ans/p? This
gives

P, = Jop) + 3 Jipm) — P Japx)+ o L) — - (102)
From (102) one sees that

P(p, %)~ Jo(px) (103)

for 0<<x <1, as is also found directly from (67) or (99). According to [33] one
further has

- (104)

—— COS$ 1 2 i T
2 v [g (x]/ —x2 4 arcsin x) —Z]
Plp,x) ~ v———

for a «medium x», 0<<x < 1, and (92) for 0< y <1, where y=1—x. Hete (104)
and (92) are asymptotic and therefore hold for large p only (p= p: in practice).
(It is interesting to note that (92) reminds strongly on the NICHOLSON formulae
[17]. Actually, as an alternative to the derivation in [33], one may divide the last
term in (67) by x?a1 when xa1 and obtain a differential equation with the
solution A Jip(ipx) + B Yip(ipx), from which (92) may be derived by using the
NicHoLson formulae). For p=py, the first eigenvalue, an approximating poly-

3:}
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nominal was instead used in Chapter 8, being the first terms of the power seties
expansion. '

A necessary condition for the usefulness of the P-functions is that they form an
orthogonal set fot p==py, ps, . . .. This will now be proven, especially because the
proof also delivers the orthogonality relation which determines the coefficients in
a «FOURIER-Pr-series. The orthogonality has been proven before for the R-
functions of Chapter 6 [11], but the proof will here be extended to their generaliza-
tions into the P-functions.

Fot Pp= P(ps,x) and Pm= P(pm,x) one has, from (67),

xP,’{—}—P,{—{—pflx (1 —x2%) Pn=0, (105)
{ xPm+ P,;l—l—prix (1 —x2) Pm=0, (106)
from which
< [x(P1Pn —PiPa)] = (ph—pD x (1 =) PuPm. (107
x

Integration of (107) gives

1
P/(1)Pem(1) —Pra(1)Pa(1) = (pi —p2) f x(1 —x?)PpPrdx,  (108)
0

since P, and P, and their derivatives are limited for x 0, according to (103).
The boundary condition in Chapter 8 is a special case of the more general ex-
pression

aP(O)+bP'(1)=0, (109)
from which

b (PaPu —PmPn)=0, (110)

which directly shows that the left side of equation (108) is zeto if 4 + 0, but this
also holds when b= 0 since (109) then shows that P(1)=0. Therefore

1

f x(1 —x2) PPy dx=0 (111)

0

if # # m. (108) may also be written as
’ ’ ’ 1
[ Po Pm—Pn  Pan Pm ——Pn] _ IXO —x2)PPy, dx, (112)
Pm~+PnPm—Pn  PmtPaPm—Pnlx=1

from which, as pm—>pa,

1

'1 ’
[ x(1—x) P dx = — [p,; op —PnaP] N (113)
0 2eal - Op op 1 g
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where P’ still means the derivative with respect to x. (111) and (113) may be

combined in

[ (1 —x) PaPr dx =22 [

1 Sama [OPa P, 3P (114)
2pnlox dp “ap ax] ppw

whete 3, is the KRONECKER symbol (8pm = 1if #:==m and 0 if # # m). Hence the
P,—functions of Chapter 8 are orthogonal and (114) gives the relation (70).

That the functions py form a closed orthogonal set can be shown in full analogy
to the proof that the functions of the FOURIER-BESSEL series of the second kind
(cf. Chapter 7) form a closed set (as well as the fact that there is an enumerable
infinity of eigenvalues), such as the proof in [20].

For that purpose one may, in analogy to [20], transform (67) with (68) into an
integral equation '

1
P(x)=p*[K(x8) (1—£) PE) &, (115)
0
where the kernel K is the symmettical GREEN function
I g 0gx<i<t,
K=1" (116)
1—lmc, 0<E<<x<],
W
ot, equivalently,
1
P)=p*[8(x,8) PE) &, (117)
where °
P(x) = P(x) | x(1 —=?) (118)
and B
(=, E) = K(x, B xE(1 —x2) (1 —€2). (119)

For the detailed proof, [20] is referred to*, merely needing obvious and simple
modifications of its proof for the BEsSEL functions.
Some further relations for P(p,x) are given in Appendix 4.

* A correction to [20]: the equation for «p» on page 87 should have kA instead of A in
the denominators of the integrands.



10 On the neglection of 6°C/éz*

According to (13), the following equation holds in the case of PorseurLLE flow in

the capillary:
r\# ¢C ?C 1oC @C
2whli—{ZV | Z=D( =4+ __= ,
V[ (fl) ] 0z (622 t ror + arﬁ) (120)

taking » from (36). The «cup mixing concentration», defined by (43), here becomes
1
Cm(z)=4 f x(1 —x2) C(x1y,2) dx. (121)
0

If (120) is integrated, after multiplication by x = r/r;, one has

1

o2
2% ?ET —4D __fx C(xty,z) dx — ﬁ C(r1,2), (122)
0z 2 1
0

where the last term follows from
10C @2C oC oCy™

JGats) e —fd( w=ls], o

0
and the boundary condition (53b).
In (122) one has 8Ci/03 <0, 9*C[6z2 >0 and C'> 0 when y< oo (except in the
entrance region, where the second derivative may be negative, but here the
generalized LEVEQUE solution will later be applied — see Chapter 11). Therefore
the influence of 92C/032 is negligible when

1

f x Clary ) dx < C(fl,z) (124

0

2

Oz?

If this inequality is not satisfied, §2C/0g2 cannot be neglected. So far, (124) is a
necessary condition. It remains to find out if it is also sufficient when one inserts
the solution of (65), which already neglects the actual second derivative.

As 8CJoz <0 and 92C/032>>0 in the actual region, one finds from (120) that the
neglection of the second derivative with respect to g leads to a certain under-
estimation of the concentration at the «downstream» end of the capillary, i.e., it
leads to a certain overestimation of the dialysis performance of the capillary. This
is the result of a somewhat exaggerated decay of the concentration along the axis,
which further leads to a certain overestimation of the second derivative in a region



On the neglection of 2C[0z2 39

of lower gz-values but a certain underestimation for higher g-values. Still, the
boundary concentration C(ry,7) is everywhere somewhat underestimated. Clearly,
(124) is strictly sufficient when the solution of (65) is inserted in the region where
the second derivative is overestimated. For higher g-values one can anyway rely
on the fact that (124) is well satisfied by the approximative solution if it is so by
the exact one. This is what makes (124) a necessary condition, but the exponential
nature of the solution indicates that the relative errors in the approximative solu-
tions for concentration and its second derivative should tend to similar values as g
grows, so that their influences on (124) tend to cancel. Before almost equal re-
lative errors are reached, the second derivative should be less underestimated than
the boundary concentration, exaggerating (124) if the approximative solution is -
inserted, again making it a sufficient condition.*

If the above discussed approximative solution of (65) is inserted, accotding to
Chaptet 8, it turns (124) into

1

© Dnk\ 2 o0
S (2‘711‘2‘) e—Du} /2713 f xPy(x) dx < lg?szk e—DmlaiP(1).  (125)
= 1 1k=

0

In the case where the approximation of the two series through their first terms is
sufficient (cf. Chapter 11), one finds

Dphz v Pi(D)
. 126
(ZVI%) < Dfl 1 ( )
fxm(x) dx
0

According to Chapter 8, one may here put

1
[ Pa(x) dx~ 0.5 —0.0520833 pt-+- 0.00161675 pt —0.238395 pt 104
0

+0.203327 p§ 10-7—0.115077 p;° 10-8 (127)
and

P; (1) ~1—0.1875 p3--0.00792100 pi—0.144043 p§ 10-3 4

40.145080 p? 10-3, (128)

using (74) and (82). Further approximations for higher eigenvalues, using (92),
may be inserted for a mote exact evaluation of (125) with more terms in the two

series.
Esxamples. Urea in water has D ~0.0009 cm?/min. If +=0.025 cm/min (which
may apply for cellophane capillaries) and ry=0.45 mm, (126) gives 0.0213 < 858

* Stﬁdy the effect of an exaggerated p; on (126).
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at an overall flow of 300 ml/min in a total of 10000 capillaries (5= 4.72 cm/min).
For a total flow of 50 ml/min (5=10.787 cm/min) this becomes 0.766 < 858. Fot
utrea in blood D & 0.0002 cm?/min is probably somewhat underestimated, but
leads to 0.00357 < 1796 for 300 ml/min flow or 0.129 < 1796 for 50 ml/min flow
with the same v and dimensions as above.

In this chapter integrals and differentiation symbols have been exchanged a few
times. Such operations are justified by the result of Appendix 2, as applied to the
solution of (65). The neglection of the second derivative, which was studied here,
is generally employed in the studies of forced convections found in literature but
a justification in mathematical terms is not given, instead physical reasons are
referred to by most authors.

11 The Liveque approximation and its generalization for the case of
limited wall permeability

The LEVEQUE approximation is an asymptotic solution of (13), neglecting #2C/6z2
and based on the velocity distribution (36) (PorseuirLLe flow) [8, 23, 39] (cf. [18]).
In the case of low concentration one may assume that the shear tension remains
constant with ¢ and put, for y=r—r <r;:

2
L _p% (129)
0z oy?
2
v=2% [1 — (i) ] ~ 477, (130)
1y Ty

which actually approximates the actual problem by one of a flat wall and linear
velocity distribution. Clearly, such an approximation is applicable only where the
concentration remains almost constant within the capillary, except for a layer near
the wall — this applies for sufficiently small values of g (neat the entrance). The
reasoning further assumes that the PorseurLLe flow is developed already at the
entrance (the entrance region will be further discussed in a later section). It will be
found that the LEVEQUE approximation can be used whenever three or more terms
of the series (44) would have to be consideted. The solution of the problem of
Chapter 5 is then simplified to three cases as follows: 1) the first term of (44) is
alone a sufficient approximation, 2) the first two tetms of (44) form a sufficient
approximation and 3) the LEVEQUE approximation is a sufficient approximation.
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These ‘three cases cover all possibilities of the problem of Chapter 5. Later the
LEvEQuE approximation will be generalized to the ptroblem of Chapter 8.
Equations (129) and (130) give

470C DeoC

W _ET (131)

The transformation ¢ = yz-1/3 converts (131) into an ordinary differential equation:

H¥C_ 47,,0C

AR (132)
og2 3r,  oF
As shown in [39], the solution is
Aol
CO '_CW 3
C= Cv;v — d Py 133
o j ey (133)
0

where A%=45/9r,D and (1/3)! ~0.89297. Cy, is hete the concentration at y=
¥=0 and C, the concentration at =0.
The diffusional flux at the wall, as given by (133), becomes

oC

Ju=D~ (134)

1 AvDy 1
= (Co —Cw
o | )(1/3>!( )

taken positive outwards. To account for a varying Cy, one may first approximate
the Cy(g)-function by a «stair-case function», baving constant Cyw-values within

9zr1

certain regions (cf. [39]), such as

n

Cwar Cot T [Culz) —Culzi-1)] oz —29); (135)
j=0

defining Cw(3-1)=Cl. Here g3, /=0, 1, ..., », are constants and o(%) the unit
step-function, which is zero for <0 and unity for > 0. The above solution
can then be stated for each region of constant Cy, (accotding to the approxima-
tion) and one finds a change of the flux at the wall, when going from the region
2 € (37-1,3) 1O g € (%4,%y+1), Which amounts to

1 [ 45Dz ]1/3

"1 13! 191, (z—2y) (136)

AJwj={(Csw,;——C

applying (134) and putting Cw(3) =Clw,s for g € (5, 3i+1)- The resulting flux
through the wall is the sum of all such increments:

Jw= _r_l_ZIOAJ wis ‘ (137)
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with a1 <3< gn1+1. If now (35—g7-1)—0 for all 7, one gets the STIELTJES
integral

Jo=— (138)

-1 /47De vy dCw(m)
(1/3)!( Or, ) (z —)t/¥

n=0

where C,, is the given wall concentration (i.e. no more approximated with a
«stait-caser) (cf. [39]). The way (138) is derived leads to a STTELTJES integral, but
for a continuous Cy(3) it is equivalent to a RiemMaNN integral with dCu(n)=

Cuo(n)dy.

Generalization for limited wall permeability

In the case of zero concentration outside the capillary, one may put for fu:
Jw=vCs, (139)

where v is the wall permeation (cf. Chapter 6). (A further generalization to the
case of a constant but non-zero concentration outside the capillary is obvious.)
Combining (139) with (138) gives an integral equation of the VOLTERRA type:

— 1 4T7D2‘ 1/3 i C’W(V])
" v(1/3)! ( 91y ) (z —n)1/3 dy (140)
0

(written as a RIEMANN integral because C, must come out continuous). This
equation can be solved by LAPLACE transformation. Introducing the simple

notation Cy(s) = Z{Cu(3)} (cf. Appendix 3), one finds
(—1/3)1A G,

Co= — , (141)
s2/3[s13A(—1/3)! —1]
where (—1/3)! &~ 1.3540 and
T2\ 1/3
__1 (4VD ) : (142)
Y131\ or,
This follows easily from regarding the integral in (140) as a convolution of Cul(?)

with g-1/3,

The evaluation of C,, from (141) is given in Appendix 3, but results in a solution
which is much too complicated for most practical purposes. Therefore a further
approximation will be introduced below, in ordet to arrive at an expression which
is easier to apply in practice.

Since the LEVEQUE approximation only applies where the concentration variation
inside the capillary is limited to a thin layer near the wall, it is reasonable to assume
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x, %« (143)

dy Oz

for most practical cases. This means that one may neglect the variation of C, with
% (locally) and solve Jy, from (134) and (139):
J Y.A. Co

YA

(144)

with 4 given by (142). Now the same amount of the solute must leave the capillary
through the wall as the net delivery through the flow:

fz2nr1 Jw dz=m1} ¥ [Co —Cm(2)]; (145)
0

since 7r2C o7 enters the capillary at g = 0 and =riCn(3)7 leaves the capillary section
extending to g, according to (43). From (145) and (144) follows:
3vA 1/3
g _Cm YA [zm Az -2A%In (1 4 5_)] (146)
Co nv A
with A given by (142). It is interesting to note that (146) gives the same expression
(for the analogous thermal problem) as the one in [18] when y—00. Another check
is that when 7 is very large, one may put Cr, & C' and thus Jiw~yCo, giving as a

further approximation Co 2y

1——— =~
Co Iﬁ-f

(147)

>

from (145), also resulting from (146) for large 7.

A comparison of the LEVEQUE approximation with the GraETz solution (44) is
given in [18] (for the analogous thermal problem) in a graph (Fig. 22—6 in [18]).
If the diagram is completed with curves for the first term of (44) and the sum of
the two first terms of (44), one finds that in the case y=00 the one-term approxi-
mation of (44) is applicable for Cy, <{0.63 Cl, the two-term approximation for
Cm<<0.85 C, and the LEvEQUE approximation is applicable for Cn>0.85 Ch.
(These rules are here simply so defined that no difference between the exact solu-
tion and the one-term approximation is seen in the diagram referred to when
Cm<<0.63 C, and that the two-term approximation and the LEVEQUE approxima-
tion give equal values at C=0.85 C', both being close to the exact curve here
and the LEVEQUE curve following the exact one theteafter).

For the case y~ 0 the solution for bulk flow (constant ») and the solution for
PorseuiLLE flow (parabolic #) both reduce to (35). It is interesting to note that (147)
is an approximation of (35) for small g, valid with an error less than 109, when
%<2 0.392 715 and with an etror less than 1%, when 2 < 0.135 i, corresponding



44 More detailed study of the wall diffusion

to Cp > 0.608 C'y and Cp > 0.865 C,, tesp. For Cp = 0.85 C, according to (35),
it is 0.838 C, according to (147).

A more general study of the applicability of the different approximations is
presented in Appendix 5.

12 More detailed study of the diffusion through the capillary wall

The equation for the diffusion in the wall in the stationary case follows from (13)

with v =0:
02C o:C 10C
— 4+ 2 1=0, 148
0z ar2+r6r (148)

and the boundary conditions are

C=Cyl(z), =1y, (149a)
C=0, r=rs, (149b)

assuming zero concentration outside the capillary. 7y is the inner and 7, the outer

radius of the capillary wall. If the wall is thin, 7;—7; <1, one can obviously

neglect 82C [0z because this detivative becomes much smaller than 8C/rér. The
solution of (148) and (149) is then

In T2

t

C=Cul2) —, (150)

Iy
In=
1y

where r,<<r<rs. From this follows the diffusion flux at the inner wall surface

Joe —Dy E Dy
w— Wa_r

Cul2) (151)
rln i
1

r=ry

where D,, is the diffusion constant for the wall material. This flux must be the
same as the one resulting from the solution inside the capillary:

oc (152)

This gives the wall permeation (51).
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Consideration of the axial diffusion

If one introduces 2 new concentration variable Cy according to

T2
In-=
C = Cy(2) —- + Ca, (153)
Ie
In-=
I
(148) gives .
2C,  ®C, 13C I
ny Pla ) 1Fa__cp L 154
Oz? or? t t Ot Yy (159
In_=
I
and (149) the boundary conditions
Co=0, r=r1, (155a)
Ca=0, r=rt,. (155b)

The solution is

w0 o A
Cam 3000 [Joa) Vo) 2], 150
k=1 Yo(hxt1)
where /, and Y, are BESSEL functions of zero order and first and second kind,
resp. The eigenvalues A are the positive roots of

Jo(At1) Yo(arz) — Jo(rte) Yo(rt1) =0 (157)

(it is easy to show that A=01is not an eigenvalue). The coefficient functions Ar(z)
are determined by inserting (156) in (154), which leads to

Af 2 A= —Cgay, (158)

where the a; are the FOURIER coefficients in the development of In (refr) [ 1n (rafr1)
according to the actual orthogonal system of Jo, Yo and Az, given by (156) and
(157).
The solution of (158) is

Ak = Alk C_Akz + Agk CAkz —[—- Apk, (1 59)

where Apx(7) is 2 particular solution, determined by Cu(3), and gx=0 since one
must have C—0 as g—00.
As was seen above, one may well approximate Cw(g) by an exponential function,
except for small values of z:

Cus Cow €757, (160)
giving
C()wakaz —az
Apers T e (161)
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For an estimation, one may here take the values of C'oy and @ as determined by the
first term of (54) for r=ry, with the coefficient given by (57), since this remains
within the same order of magnitude as the exact solution.
Thus, putting together (153), (156), (159), (160), (161), (54) and (57), one finds
for g > X! (so that Axa Apk, assuming A, > a):

Iz

In=

Ir adx

2z 3 (162
In Ia + k§1k}% —a? ( )

1

CaCy [Jomr)—Yo(xkr)Y :

o AL

Jo(Axx)
(

where 2 a2 Dstfvri and 0<C s <C2.4048. Since the 4y are the Fourier coefficients
for the first term in the major bracket, the second term (the sum) is negligible
when

D 212

2 [_ (i‘) ] <N (163)

V \I;
According to [17] the value of Ay is 15.7 fot rofri=1.2 and 6.27 for rejri=1.5
and 3.12 for r;3/ry =2.0. Therefore assuming z > M! before (162) is not a severe
limitation. The criterion (163) may be rewritten as

2 (I)2< [MIW 2 (164)

v si(w)l

where s1(w) may be taken from (59). According to Chapter 7, one has s}/w>2
and a lower limit for the right side of (164) is therefore 0.25(;71)2. For an example
of D=0.0009 cm2/min (urea in water), y=0.025 cm/min (fits in order of magni-
tude to practical cellophane capillaties), 7,=0.45 mm and #=4.72 cm/min
(corresponding to a total flow of 300 ml/min in 10000 capillaries, which may be
plausible for a capillary kidney) one finds »=1.15 and s =1.33. This gives
(Mr1)? > 1.2-10-4 in (164), which certainly allows for an extremely thick capillary
wall before any consideration of the axial diffusion in the wall is necessary [cf. the
values given after (163}]. (This also justifies the assumption A, > 4.)

This shows that for any practical application to the capillary artificial kidney, one
may apply the boundary condition (51) without hesitation. The large difference
between the right and left sides of (164) in such applications well justifies the use
of the estimation (160), because even when this estimation is quite a rough ap-
proximation, it is here sufficiently good for showing that the sum in (162) is
negligible. |
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In hemodialysis it is generally desired to achieve a certain controlled ultrafiltration
through the separating membrane. Experiences with capillary artificial kidneys
[32, 36] show that a controlled ultrafiltration through the walls of the capillaries
is readily achieved. This will, however, have a certain influence on the wall per-
meation v, as will be found below.

For medical reasons, it is not advisable to have a substantial change of hematocrit
and protein concentration as the blood passes along the conduits of a dialyzet.
One may therefore assume
D, <O, (165)
where @ is the inflow of fluid into a capillary and @, the total ultrafiltration flow
of fluid through its wall. As the latter flow must satisfy the equation of continuity,
one has, in the stationary case:

Oy = vy 2nrL. = const., (166)

whete 7, is the mean (over z) ultrafiltration flow velocity at radius 7 in the wall
and L the total capillary length. Therefore one may put

Vo= E, (167)
£

where U is a constant, U= ®,/2nL according to (1606).
(165) means that the ultrafiltration does not change the situation inside the capillary
directly, but only indirectly via its influence on the wall permeation.
If one assumes, for simplicity (cf. the end of this chapter) that the ultrafiltration
flow velocity is independent of g and hence everywhere in the wall amounts to 7y,
the differential equation for the diffusion in the wall here follows from (12) with
v, =10, and v,=0:

2
D, (a C 1 ac) ey GC’ (168)
Or2 r Or

whete D, is the diffusion constant for the wall material. (As in the previous
chapter, one may well neglect the axial derivative and also axial components of the
ultrafiltration flow). The boundary conditions are again given by (149) and it
follows that

t3U/Dw — 1t U/Dy

C—Cu ‘ (169)

IzU/Dw—r1U/DW,

giving the diffusion flux

oC
w=—Dy—
J or

U & (170)

r=r;+0 (rz)U/Dw )

151
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at the inner surface of the wall, which approaches (151) as /—0. The total flux
through the inner wall surface is this diffusion flux plus the amount of the solute
carried along with the ultrafiltration flow per unit surface: Cufiy(ry). This gives
the wall permeation
19\ U/Dw
Jw U U (E)
Vo n (rg) U/Dwm1’ a7y

Iy
applicable as equivalent wall permeation to the previous problems, neglecting the
influence on the velocity distribution inside the capillary, due to (165), so that the
whole influence of the ultrafiltration is represented by this equivalent permeation.
v according to (171) approaches (51) as U/ —0. For s=r; —ry <y this gives

D, U
L (172)
h 1y

Putting », ==, in (168) means a certain approximation, which should in any case
lead to a reasonable estimation of the influence of the ultrafiltration. Of course the
true #, in the wall is a linear function of g, decreasing towards the far end of the
capillary as it is proportional to the pressure difference over the wall, which
clearly decreases linearly with increasing g. An exact solution, considering the
vatiation of », with g, would change the solution in Chapter 8 to a considetably
more complicated one (as the equivalent y then varies with ).

As discussed in [39] for the analogous thermal problem, one may state the dif-
fusion flux from the surface of a tubular flow with a prescribed surface concentra-
tion Cyu(3) by way of a generalization of the GRAETZ solution reviewed in Chapter
5. This leads to an integral equation

4

Jol)= 2 3 Aye—wbues | endnd dCo(n),  (173)

Tik=1
n=0

(stated as a Stievt]Es integral, cf. Chapter 11), where a3 =3.058, g =22.178,
as="53.05, ... and A, =1.499, 4,=1.078, A, =0.358, .... Like in Chapter 11,
this is an integral equation for Cw(3) since Ju(3) =7(%) Cu(z), but not easy to
solve. (The solution in the case of a constant y is given by (66) for r =ry, although
derived in a different way.)

A step toward the solution of (173) is to perform a LAPLACE transformation. In
this way, the integral equation will below be converted to an ordinary differential
equation for the transform Cu(s) of Cu(3). The final steps toward 2 final solution
ate very complicated and will be left out.



The influence of ultrafiltration on the wall permeation 49

The pressure drop along the capillary is (POISEUILLE’s law)

8uL

Ap=® —, (174)
ot
whete p. is the viscosity. From this, one easily derives
vu(t1,z)=a —bz, - (175)
where
ut— 8 1
2,  PowPot 8Pulfmel (1762)
ZTCrl(pQut——Po) L +I8(DP.L2/TCI§
8 u
b=~ q) (176b)

zirt 2rt(Powt—po) L+ 8@pLe/me?
if pous is the pressure inside the capillary at the outlet end and po the pressure
around the capillary (assumed constant —a generalization to a linear variation of
po along the capillary is obvious). With (167) and (172) one then obtains (because
the influence of axial ultrafiltration flow components can be neglected), when

7’2—7'1<7’1,

v(z) =21 —bz, 177)

where

= PHVK +a. (178)

Hence, using the LarLacE transform notation introduced in Chapter 11 (and
Appendix 3):
Jul®) = F{(a1 —b2)Cu@} =a:Cu(s) +bCE),  (179)

so that (173) transforms into

alcw —l_ bC“’r - 13 (SCW '_CQ) % Ak 5 (1 80)
1y k=1 axD
s +
vr}

since the integral can be seen as a convolution between Cy and a series of ex-
ponentials (Cy must be continuous and therefore one may regard the integral as a
RieMANN one — cf. Chapter 11).

Equation (180) can be solved in terms of the solution for a constant y. For =0
the solution Cyy of (180) is known from Chapter 8 and the infinite sum in (180)
can be expressed in terms of Cyx:

A CanCw (181)
S
VIl

4 Sigdell
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which, inserted into (180), leads to

bC;, (sC1 —Co)= alCo(Cw ——Cwl), (182)
with the solution
C s ¢
¢, = 20 (Ao _f s — ) (®), 183
b ¢ SCwl -—'Co °) ( )
0
where .
2:C, ds
= —_ 184
=" = e (184)

and the constant .4, is so chosen that sC,,—>C, when s— 0.

The majort problem here is to find the inverse transform C, of €y, which will,
however, not be sought here, since one reason for this study is to demonstrate
the complexity of a more exact solution as a motivation for applying (171) or
(172) in practical cases. Another reason is that it gives a2 mathematical introduc-
tion to the next chapter.

14 The general case of varying concentration outside the capillary

In the previous chapters the concentration outside the capillary was assumed to
be zero (or constant). The general case of a varying concentration Cy(z) outside
the wall can be solved from (173) by using

Jw(2)=v[Ca(2) —Ci(2)] (185)
in the case of a constant y. LAPLACE transformation gives
D = A
1€ —C)="(sCo—C) 3 —— (186)
s+
vri

[cf. (180)]. The general solution can be expressed in tetms of the special solution
Cuws() for the case Cy=0, known from Chapter 8, which gives the expression
(181) for the infinite sum above, putting #, =y and Cypy = Cye. With this inserted
into (186), one finds

Co=Chz— El" Ci (sCwe—Co), (187)



The general case of varying concentration outside 51
since Cwa(+0)=Co,

i ,
CoCre— f Cs (2 —0)Cuz(?) 4L (188)
0

e «mixing cup concentration» Cp, defined by (43), can be obtained from Cy by
ng the transport balance equation (145). LAPLACE transformation of this equa-
n gives, with (185),

2. 2 1
“Jw= T (Cy—C)=n7 (_ Co —Cm). (189)
s s s
lving for Cy, gives, after inverse transformation,
z
2
Ca— Co— ¥ f (Cw—Cy) dz. (190)
v
0

instead, Cy, is eliminated between (187) and (189), one finds

Cm = Cmg —_— Cl C1 (Ssz —Co), (191)
[
Cong = (co _ A ng), (192)
s £,V

, Cms is the solution in the case Cy =0, known from Chapter 8, as is seen from
19). This gives

1 - ,
Cn= Cs — f Cu(z —)Cme(2) AT, (193)
0

ce Cpa(+0)=Ca.

the still more general case of a varying v, (186) is considerably more com-
cated since the term on the left side becomes a complex convolution between ¥
1 Cy—C,, turning (186) into a complex integral equation. This equation can,
wevet, be simplified in certain special cases. Examples of such cases are a
early varying v (treated in Chapter 13 for C; =0), an exponentially varying v
hich turns (186) into a difference equation] or a sinusoidally varying y (which
7es a more complicated difference equation).



15 On the flow velocity profile and entrance regions for blood

Although blood is a non-Newronian fluid, it can approximately be treated as
NEewToNian in many practical cases, provided that a proper value of the viscosity
is used (depending upon the tube diameter, the hematocrit and the temperature)
[31].

A simple check of the validity of this approximation in the analysis of a capillary
kidney may be done, using formulae by Tayror [37]. From the cited reference
may be derived, as expression for the velocity distribution at steady flow in a

2 2 3/2
e I S T (S
8L 1 6 t lLa.
where Ap is the pressure difference between the ends of the tube, L its length,
., the asymptotic viscosity of the blood for infinite tube radius and . its apparent
viscosity for the actual radius 7. The formula is valid as long as not ys > p.s, 535,

for e << 3 pe (cf. [37]). The apparent viscosity is further given approximately by
371

tigid tube:

L
Ha R oo (1 —}—V ), (195)
I1AP

for Ap in dynes/cm? and using the same units for L and 4. From this one finds an
apparent viscosity at Ap= 100 mm Hg of about 1.028 y. for a tube of 10 cm
length and 1 mm radius and 1.09 ., for a capillary of the same Jength and 0.1 mm
radius. All attempts to the construction of capillary artificial kidneys hitherto
known have used capillaries with an inner radius of about 0.1 mm or more. It may
therefore be concluded, from (194) and (195), that the flow profile in steady flow
is to a good approximation parabolic in the capillaries of such an artificial kidney.
(As will be clear from later discussions, a2 much smaller capillary radius than
0.1 mm would hardly be economical due to the very high number of parallel
capillaries then needed in the dialyzer.

In the case of a pulsatile flow, it may further be concluded that the mean velocity
(over time) is parabolically distributed, since, as was found above, the blood be-
haves nearly Newtonian in capillary dialyzers and the capillaries may be regarded
as rigid tubes. Therefore the flow state may be well approximated by the NAvIER-
STokEs equation for a rigid tube [31]:

i‘ﬁz_léEJrEE(ra‘“), (196)
ot e L pror\ or
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where v, is the time-varying velocity. At steady-state pulsatile flow, an integration
of both sides of (196) over a whole period with respect to time yields
o:_éﬂ+iﬁeﬁ} (197)
pL ~ prdr\ or
whete » is the mean value over time of the velocity at radius . (197) is the dif-
ferential equation of the Porseuit.LE flow condition and hence gives a parabolically
distributed ».
The entrance region is the length of the capillary, from the entrance end, where
the flow profile differs from the fully developed parabolic one in the (worst) case
of a uniformly distributed entrance velocity. In a capillary kidney, the REYNoLDS
number is always well below unity and therefore the entrance region extends only
to about 1.3 ry, accotding to [21, 24] and [25]. This is about the length at the
entrance end which is molded into an end-plate for mounting purposes and there-
fore the PorseuiLLE flow condition (for the time-mean velocity) is fully developed
where the dialysis begins.
Thus the assumption of PorseuiLLE flow all along the capillary, adopted in the
previous chapters, is justified by the theory of TAvLOR.

BEFORE STUDYING THE FOLLOWING CHAPTER:
PLEASE READ THE NOTE ON THE BIBLIOGRAPHY
PAGE RIGHT BEFORE THE CONTENTS PAGE!

16 On the optimization of a capillary dialyzer

For a sufficiently long capillary dialyzer (length L), one may approximate the
«mixing cup concentration» Cy, at the outlet end by a single exponential function.
The clearance of the dialyzer is defined as the portion @, of the total mean inflow
® at its inlet end which is «cleared» from the solute:

or, with the first term of (88),

@ =D (1 —a; e—-DLofr2vr}), (199)
where 1> #;()>0.82 (cf. Appendix 5). Let N be the total number of parallel
capillaties. Since then ® = Nrnris, one may write

Q=D (1 —a, e—=DLNp/20), - (200)

Here one has
ntiAp
8uL.

N

<O <D, (201)
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where Ap is the mean arterio-venous pressure difference (mean value over time)
at the connection of the dialyzer to the vascular system and without the load
effect of the shunting by the dialyzer («open circuit voltage») and @, is the maximal
mean flow which can be delivered by the vascular system at the connection
mentioned (the flow — «shott circuit current» — in a zero flow resistance shunt at
this connection)*. p. is the viscosity of the blood and ry the radius of the capillaries.
One may call the state pressure limited at the lower end of this ®-range and fow
limited at the higher end.

Before further discussion of optimization, it will be shown that the flow-limited
case gives the highest clearance @, and therefore should be aimed at by realizing
a sufficiently low flow resistance in the dialyzer. The derivative of @, with respect
to @ is

ob, . DLNnpi
=1— —DINmpif2¢ (1 4+ —— " ) >1-—a, >0, (202
T he ‘ ( T 20 ) : (202)
since
2
1+ %@ < eDLNmnpif20, (203)

Hence @, increases with ® in any case and the maximum flow ®, should be ap-
proached through proper design.

Requierements on artificial kidney

The clearance @, should, in principle, be as high as possible, although an upper
limit is, in praxis, set by the risk for complications through the disequilibrium
syndrome (which is caused by too large an osmotic pressure difference between
the cetebrospinal fluid and the blood, resulting from a too rapid removal of
wastes from the blood).

The clearance can, however, easily be reduced and controlled through reducing
the concentration difference over the dialyzing membrane by adding certain
amounts of the waste solutes to the rinsing fluid. Therefore a disequilibrium
syndrome is easily avoided clinically and, from technical considerations, one
should require the maximum possible ®. as one optimization criterion.

Another requirement is that the volume

V =nriLN (204)

* @, may be taken at the distal ends of the connection tubings instead, when their flow
resistances are not negligible. This includes their influences in the «source». The
following optimization procedure is valid for external shunts, aiming at a pump-less
operation of the dialyzer. With an internal fistula, a pump is required anyway, unless
some kind of fistula compression can be used.
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of the dialyzer should be minimized in order to reduce or eliminate the need for
priming with transfusion blood.

A third requirement is, as found above, that the flow-limited case should be
approached as much as possible by keeping the flow resistance

. 8uL

R=
Nt}

(205)

sufficiently low.

The requirement of a high @, in the flow-limited case ® =®, is equivalent to
requiring as high a value as possible of LNpt [see (200)]. The derivative of this
quantity with respect to 7y is

. .

wW-—— —D1
Grl 'r:r‘{

dw

since » =+yr1/D. In this equation a constant 1 has been assumed [cf. (204)]. As is
seen from Appendix 5, the bracket in (206) is always negative. This means that
one should realize as small a radius r; as possible.

The optimization procedure which evolves from the above considerations is to
chose as small a radius 7, as is practically and economically realizable and as higha
volume 1/ as is physiologically acceptable without priming the dialyzer with
transfusion blood (bearing in mind that the dialysis treatment is repeated two ot
three times a week and that the patient each time looses a certain fraction of the
blood contained in the dialyzer and its connecting tubings — the main part of it
can be returned to the patient, but some remains sticking to the internal surfaces).
Finally the flow-resistance R should be chosen as high as is acceptable with
respect to an approximative realization of the flow-limited case. With these choices
made, one finds, from (204) and (205):

Lo/ VR (207)
2.
and
:
N= 2 %EY (208)
ndl R

The wall thickness #=rs—r, should be chosen as small as is practically and
economically realizable in order to keep v, and thereby w=r+ri/D, as high as
possible. One may also add a requirement that the diffusion coefficient D,, of the
wall material should, for the same reason, be as high as possible, but limited
choices of workable and blood-compatible materials for the fabrication of capil-
laries leave few alternatives in tespect to this requirement.
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A numerical example

It seemes as if a practical lower limit for the radius 7, at present (1971) lies around
0.1 mm and a lower limit for the wall thickness # around 10 u. A volume I/ of
50 cm3 seems quite acceptable from clinical aspects. The flow in a QuUINTON-
SCRIBNER or BrEscra-CiMiNo shunt may fall in the range of 200—800 ml/min. If
the non-shunted arterio-venous pressure difference is taken as 100 mm Hg, this
corresponds to a «source resistance» of 0.2 (mm Hg) min/ecm3=1.6-10¢ g/cm4s
at the mid-range shunt flow of 500 ml/min. One may require the resistance R to
be a tenth of this value: R=1.6-10% g/cms4s. The viscosity of the blood may be
taken as 3 cp at about 509, hematocrit.

If these values are inserted in (207) and (208) one finds a length 7. of 5.8 cm and a
number IV of capillaries which amounts to 2.8 104,

If the wall material is cellophane, with a diffusion constant D,, of roughly 4-10-
cm?/min for urea, one finds a permeation v = Dy/h of 0.04 cm/min. This cor-
responds to a » of 0.45, estimating the diffusion constant for urea in blood with
the value 9-10-* cm?/min in water. With this #, the first eigenvalue p; in Chapter 8
is 1.2. This gives a relation

% ~0.99 06533141

ot Cn[Co s 0.52, at a total blood flow of 500 ml/min. The first term, alone, in the
series is fully sufficient as an approximation of Cpn/C,. The corresponding clear-
ance is 240 ml/min.

Here all values were taken as more or less rough estimates (the etrors above
should be less than 309%,) in order to get an idea of the magnitudes for reasonably
realistic illustration purposes.

Dependence of the dialyzer performance on the membrane area

The membrane area is
A =2nr,LN. (209)

This quantity appears explicitly in the telation (200) for @, only for small values
of w, such that p, mZ]/z;, so that @, ay.A (cf. Chapter 8).
In the other extreme case of a large », such that p; A po=2.705, one has, in the
flow-limited case:

Q¢ =D, (1 —0.82 e—DLNpj/200) (210)
and in the pressure-limited case:
ntiAp

(I)c = N
8uL

(1 —0.82 c—4:DL*pj:{AR), (211)
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Neither of these cases exhibits an explicit or direct dependence of @ on the area .
Only in the case where ry is kept constant (for varying designs), may one say that
@, is a direct function of A4 in (210) and only in cases where N is varied alone
may one say that @, is proportional to A4 in (211).
In the general case one may write, for a given O,

®o= D (1--a; e—DARI/4r), (212)
where 4 is practically constant. Since one will generally chose the smallest value
of ry which is practically and economically realizable, one may regard this radius
as a constant and consider the dependence of @, on L and N for a given @ (and
leave the influence on @, in the clinical situation, out of consideration). In that
situation, smaller values of ®, may be seen as being almost directly dependent on
A. The derivative of @, with respect to 1 may then be written

2
ob _ Dps (1 _‘?f) 213)
@A 41'1 ]

which is practically constant if @, is sufficiently smaller than @, in which case @,

is an almost linear function of A.

17 Influence of the concentration distribution between the capillaries

In the previous discussion, it was generally assumed that the concentration out-
side the capillaries was zero. This is the limit case of a very high flow of the
rinsing solution between the capillaries, having zero entrance concentration of the
solute studied. The flow of rinsing fluid required in ordet to come reasonably
close to this ideal case depends on the diffusivity of the actual solute in this fluid.
Below, an approximative study of the more general case will be catried out, under
the assumption of a countercurrent condition. Con- and crosscutrent conditions
will not be studied since these give less efficiency as is well known from studies on
heat exchangers [13, 29]. First a laminar flow condition will be assumed, later
turbulence will be briefly discussed.

A study of longitudinal laminar flow between cylinders in a regular array has
been performed by SparrRow et al. [34]. Later, they also published a study of heat
transfer in such a flow condition [35]. For the laminar flow study, they discuss
two cases: triangular and square array, assuming a fully developed flow. For the
heat transfer study, they discuss a triangular array and a fully developed flow under
the condition of a petipherally uniform sutface temperatute around the rods and
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a given heat transfer per unit: length of each rod. They also compare their exact
results, under these conditions, with a simpler, approximative solution using an
«equivalent annulus» concept. This concept is based on a concentrically circular
annular area (in the cross-section through the bundle of rods) around each rod,
catrying the flow of the «outside» fluid, which has the same measute as the true
area (which has a polygonal outside boundary and a circular inside boundary),
associated with each rod in the triangular array which they study exactly. Both the
flow and the heat transfer equations are solved for the equivalent annulus. As a
result, this approximation is applicable to the triangular array with an error of
less than 59 in the NusseLt number for spacing rations down to 1.5. The spacing
ratio is defined as the ratio between the distance between the axes of two neigh-
bouring rods and the diameter of a rod. In the case of a capillary artificial kidney,
one cannot assume a regular array since the capillaries are flexible and furthermore
generally seem to swell slightly and bend and separate in a varying fashion when
immersed, so that the distance between them and the form of a flow area for the
rinsing fluid, associated with one capillary, varies from one capillary to the other
and also along a capillary in a more ot less stochastic fashion. Therefore one is
forced to adept the «equivalent annulus» concept for an approximative treatment,
since a mote accurate theory is almost unrealizable.

The differential equation for the laminar flow in the equivalent annulus is (cf. [34]
and [35]) (taking velocity and pressure drop positive)

aZVs 1 avs . 1 APS

, 214
orz ot oOr w L G149

whete »; is the local axial velocity in the annulus, p. the viscosity and Aps the pressure
drop, for the flow of rinsing fluid, along the capillary length L. The boundary
conditions are

Va(te,2) =0, @15)
S (t0,7) =0, (216)
or

whete 7, is the outer radius of a capillary, equal to the inner radius of the annulus,
and r; the outer of the equivalent annulus. If the total cross-section area of the
capillary bundle is .4; and there are IV capillaries, one finds

=) 2t (217)

Hete the value of .4, is to be taken as the one which arises in the immersed condi-
tion. For proper rinsing, the cross section area of the cylindrical container for the
capillary bundle should also amount to 4 so that no useless shunt flow arises (in
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the immersed condition). Otherwise an annular part with the area A, — A, where
A, is the area of the container cross-section, around the whole bundle must be
treated separately as a shunt low which reduces the efficiency of the dialyzer.
Taking s independent of g, the solution to (214), (215) and (216) is

A r 1
va()=> P; [r% In = — 5 (s —r%)]. (218)

The diffusion equation still has the form of (13), using »=—s(r), but with the
boundary conditions *

[ Ce(t,1)=Cx, (219)
Co(t2,2)=0, : (220)

3Cs
o

using C’s as a notation for the concentration in the rinsing solution, if one assumes

—0, (221)

I=r,

seto entrance concentration at y = L (counterflow), where L is the length of the
capillary, and zeto concentration at the capillary surface, for a start. The idea of
setting Cs(rs, %) = 0 would be to complete it for a varying Cs(rs,%) in analogy to
Chapter 14 and then tie the solution together with (193).

The solution of (13), according to the method of FOURIER, with 82C 5/0%2 neglected
is based on an orthogonal system made up of the solutions F of an equation

1 1
prylp_lp [rglni—_(rz—rg] (222)
r D fo 2

for different eigenvalues X [cf. (16), (39) and (67)]. An analytical study of these
solutions is a major mathematical task in itself and will not be carried out here.
Instead a further approximation is introduced as follows.

The simplest case to study is that of a given, constant diffusion flow per unit length
of a capillary and a constant concentration (for each g) along the periphery of a
capillary, analogous to the case studied in [35]. From such a study a kind of
«surface-to-bulk permeation » yp can be defined by putting

¥o(Ci —Cr)=Js, (223)
where C; and J; are the concentration and the diffusion flux at the outer capillary

surface and C) is the «bulk» or «mixing cup» concentration, as defined in analogy

to (43): I
1
Col) = — f Orrve(t,2)Ca(t,2) df, (224)
mo(td —13)Vs
Is
* (221) applies to 2 physical “annulus case” but may not necessarily apply to the case
of an equivalent annulus,
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whete 7, is the mean velocity:

Ig

Fe— f 2mtvy df —

'J'C(fa — fz

2p,L(r3 —1'2) [ ( ) + rird —%f‘] (225)

With the definition of vy, above, one gets

Js=p(Ci —Cp) = vs(Cw — C) = 1 (Co—Cp),  (226)
YstYb

where C), is the concentration at the inner wall of the capillary and

I

Ys=Y (227)
Iy

since the total diffusion flow through the wall, pet unit length, is 2wr /=
2nryfs, cf. (52).

Defining Yero ts Ty e

YsTYo 1y ‘Ys—i— "{b,

Yo=

so that Ji, =v(Cw —Cb), and Cpe: as the solution Cp, of Chapter 8 for y=-+e.,
corresponding to a hypothetical C3 =0, (191) gives

Cn= Cmet — cl C(sCimazt — Co). (229)
Now

L
DpCo(z) = 21N f +(Cy —Cy) dz=® [Cm(z) —Cm(L)], (230)

(counterflow), where
Op = Nr(rf —r3)7s (231)
is the total flow of rinsing solution [cf. (225)] and
O =Nnriv (232)

is the total flow of blood through the capillaries.
Eliminating C)y between (229) and (230), one finds

Cm = szt —

o 1
o [Cm ~= Cm(L)] (sCrzt—Co),  (233)

‘which can also be stated as an integral equation [cf. (193)].
Solving for Com, one finds
S(Db

o .
o (sConat —co)] = (234)

m2t
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Here Cn(L) has first to be treated as an unknown constant and then it can be
determined by setting = L and make «Cn(L) = Crn(L)» [cf. (243)].
Accotding to (88) one has, for a sufficiently large D L7,

Cmae(z) &~ aCoe = (235)
for g~ L, where
8wi
o= (236)
5 [OW
)
P P=h
fot we=~er1/D and .
a2 (&) . (237)
2v Ty

This gives an approximation of Chpe(3) for sufficiently large g, ot of C ma(s) for
sufficiently small 5. Hence the LAPLACE transform of (235):

& «Co

s+ 8

can be inserted into (234) to yield an approximation of Cy, for sufficiently small s:
s [a0nCo+ (0 — NPCi(L)] —pPCm(L)
TS s [t (@ — DO+ B(Dp—D)

(238)

(239)

From this follows

OCn(L) a®dy,
Co
(I)b_q)_[_q)b-l-(a—l)q) [ T

Op—D
PCn@N —tr5, s, (240

sz ~r T
(2) o —0

for a sufficiently large g and if @, # @. The special case @p =D gives
Cm L [2Co+ (2 —1)Cm(L)] — £ Cm(L), (241)
«s xs?

or
Cm(z) ~ i [2Co 4 (o2 —1)Crn(L)] — % Cm(L), (242)

for a sufficiently large 2. Here Cip(L) is determined by putting 5= L:
aCo
14pL
when @ = ®;. In the general case, Cn(L) is determined analogously by putting

7= L in (240).
In this way an approximative solution is obtained with a reasonable effort. A
further approximation is found by defining a yn, such that

Jo="vm(Cm —C), (244)

Can(L) = (243)
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from which

[ Jo=vm(Cun —C)=v(Cs —Cy), (245)
r
Js= f Jo=1(Ci —Cy), (246)
2
2ntiN Jw=2nt:NJs = —® ddcm, (247)
z
2retaNJ o= — by O, v )
dz
One finds that this results in
dCnm 2mrs Nyt
= Cmn—Cyp), 249
- " (Cn—Cr) (249)
dCb ZﬁrgNYt
Cm —Cp), 250
& o, ( b) (250)
Where 1 1 1 1
=4 (251)

Yt Yo Ys Ysm

with ysm =ym71/r2. The solution of these equations is treated in [13].

THE CALCULATION OF Yb IN THE GENERAL CASE HAS BEEN CARRIED
OUT IN THE MEANTIME (CF. NOTE ON THE BIBLIOGRAPHY PAGE THAT
COMES BEFORE THE CONTENTS PAGE)

Determination of y; in the laminar case

In [35], the case of a fully developed heat transfer at lJaminar flow is studied under
the condition of a peripherally uniform surface temperature around the rods and
a given, constant heat transfer per unit length, as mentioned eatlier in this chapter.
As a result, the quotient of the difference between rod surface and fluid bulk
temperature over heat transfer at the rod surface evolves as independent of
temperature. It only depends on geometry, flow, pressure gradient, viscosity and
thermal diffusivity in the fluid. This quotient delivets a value for v, for that case.
Translated to the present diffusion problem, the results of [35] for the equivalent
annulus concept can be written as

Ci— Gy TN f (Ci —Cy)vat dr (252)

where »; is given by (219) and
2ntaNJsAps {[ pwdpL
16

2 r
Cp—Ce= """ _ e 2]1 r
LT SeNAp, 8 THjla
" —r} rg

64 8

~He 2—r2>} (253)
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From this, v» can be determined, applying the definition (223). In [35] the integta-
tion of (252), with (253) and (218), has been carried out and results in a very
lengthy expression which will not be repeated here. Note that ©p/Ap is independ-
ent of ®p or Ap [cf. (225) and (231)].

In the actual case of a varying [, along the capillary, the value of yp is not constant,
but experience from heat exchangers [13] shows that the variation of the corre-
sponding thermal quantity is mostly small enough, so that it can be taken as a
constant. The equivalence of the diffusion problem leads to the assumption that
this will also be the case for ys. Therefore v, may, to a reasonable approximation,
be treated as a constant (as was also done) in the earlier discussion of this chapter.
The value may then be taken from (252), (253) and (218). A varying y» could,
however, be taken into account at the expense of a considerable mathematical
complication (cf. the end of Chapter 14), which may be somewhat reduced if a
piecewise linear ot an exponential approximation of vy is chosen.

An indication of the plausibility of this approximation for vy is, by analogy, given
by the following discussion of ym.

Determination of y,,
ym may be determined downstream from (44), using

Cm
2rety = — 3 ‘La — 2nt1ymCon, (254)
'z

from which
D
Ymi=1.83 — (255)
Iy
(index 1 for the downstream value) when g is large enough, so that C, may be
approximated by the first exponential function alone in the series (44). At the inlet
end one can determine yy, from the LEVEQUE approximation. With Cy=0, one

finds from (134):
(256)

T ap)
(index 2 for the inlet end value). [13] gives a curve of the variation of the NUSSELT
number with axial length (Fig. 13 in [13]), from which can be concluded that ym
is practically constant for

1 45D2\ 1/3
( 9zr1)

"
2>0.08 g (257)
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of > 8.5 mm in the example of urea in water at 300 ml/min of Chapter 10 and
£ >39 mm for urea in blood at 300 ml/min. In the latter case, the ymi-value is,
though, a very rough estimation. Still, the curve in [13] shows ym to be less
than 2.5D/r, for g>18 mm.

For compatison of these results with the case of constant diffusion flow per unit
length and petipherally uniform concentration, analogous to the calculation of v»
above, one may solve (65) with 8C/8g = 2]u/ri# and a constant J,. This gives

D
Ynlm 2.2 — (258)

i8]
Under the circumstances, this is a reasonable estimation. This discussion gives an
idea of the error involved when vy is determined as above. Still, this seems to be
the only reasonable theoretical approach for practical applicability.
It should be added that, according to [13] (Fig. 13), the mean value of yn along
the capillary length L remains reasonably constant for

e
L>0.25 g (259)
at the value
Ym A2 B (260)
I

Determination of vy, in the turbulent case

Since the diffusion of heat and solute are exactly equivalent phenomena in the
laminar case, one may assume that this also holds for the turbulent case (with
appropriate eddy diffusivities for momentum and solute transport). For the deter-
mination of vs, the theoty applied by DEISSLER [3, 4, 5, 6] may then be adopted
and translated to the case of solute diffusion. According to this theory, one has
for the axial mean velocity »; (mean value ovet time) at a distance y from a wall:

yr— et )”Z]ue“(‘"’: Ry av) (261)
! 0
for y* <26 and
V= 11 Inyt+ A (262)
for y+> 26, where ”
vi= (263)




Influence of the concentration distribution 65

and

L (264)
wle
Here ¢ is the density and p the viscosity of the fluid. 7, is the shear stress at the
wall, #=0.109, »=0.36 and A=3.8.

For the diffusion flux, one may put
eC oC
J=—D_——ea—, (265)
o Oy
which defines an eddy diffusivity eq for the solute transpott in the turbulent case,
in analogy to heat transport. DEISSLER has shown [4] that, in the analog thermal
case, the heat flux has 2 negligible effect on the temperature distribution. Making

the assumption that this also is true for diffusion, one can write
oC .
Js~ —(D-Fea) e (266)
y

where J; is the flux at the wall. Furthermore, in heat transfer analysis, the relation
between the eddy diffusivity for heat transfer to that of momentum transfer, €, is

generally taken as a constant:

2= (267)

where ¢ is defined by

dvs
=t (268)
y

Dersster has also shown that the effect of 7 on the velocity distribution is negli-

gible. Therefore one may write
dvs

Tory (n-+pe) ~—- (269)
dy
Elimination of & from (266), (267) and (269) gives
oC Js
aY D —l— i‘f To (Ei—y.~ —{1-)
P st

The velocity distribution given by (261) and (262) is obtained from integration of
(269) with ‘

(270)

€= N2y (271)
for y+ <26 and
o ye (AVs/dy)® (272)
(d2vs/dy®)?

5 Sigdell
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for y+ > 26. As mentioned in [6], a more exact expression for y+ < 26 is
e = n2vgy(l —eVsye/L), (273)

where the quantity in the paranthesis becomes important, for heat transfer, only
at PRANDTL numbers appreciably greater than one. The PRANDTL number in heat
transfer theory is equivalent to the quantity p/pD in the diffusion case. If, there-
fore, p/pD > 1, the velocity distribution given by (261) should be reworked ac-
cording to (273), which may alter the constant .4 in (262) as well since the two
equations for v} ( y+) shall give the same value at y+=26.

The purpose of this section has only been to sketch mathematical tools which
could apply for diffusion studies, if certain assumptions hold for solute diffusion
in the turbulent case. Before one can go deeper into the theory, these assumptions
must be checked. The author has no access to experimental facilities and has not
found literature which could aid hereto when writing this chapter. Therefore it
can only be mentioned that, if the assumptions hold, the vy, of the turbulent case
can be determined in the same way as for the laminar case, using the above

equations.

Effect of repumping of the washing fluid

To reduce the mathematical complexity to a reasonable level, the effect of tepump-
ing the washing fluid will here be studied on the basis of the simplified equations
(249) and (250). Assuming a relow @, from the output to the input of the washing
fluid and a net flow @,, one has a total low &, = @, + ®, within the dialyzer. If
the output concentration of the washing fluid is C(0), the input concentration
becomes
Cy(L) = Cy(0) %, (274)
Oy

if the net input flow has zero concentration. Solving the equations (249) and (250)
for Cn(0) = Co, one finds for the total transport of solute material away with the
net output of washing solution:

D@0+ D) [eL (ﬁ%’?%) _1]

o e

M = (Dan(O) = chCo
L .
O(Dy - Dr)e (@n+®r ‘1’) — 2 — D0, — DO,

where &= 2nryNy; is constant, Studying the derivative of 1/4 with respect to
@, for a constant @, one finds that it is always negative. Therefore a reflow @,
increases the efficiency of the dialyzer. This increased efficiency of the dialyzer
is even larger than indicated above, since y; is actually not constant (although
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treated as such above) but increases with @y (because y» is reduced due to a
thinner boundaty layer). In the limit case of @, = co, the equation for M reduces
to

1 _e—LKj@

M:(Dnc b
0 1 _e—LK[‘I‘+ (Dn/(I)

(276)

but fot a very high value of @, as compared to @y, the outside concentration C
is practically constant along the capillaries and in this case a more exact solution
can be obtained as discussed in Chapter 8. In this case one can expect turbulence
and it may then be suitable to determine y5 from experiments rathet than from the
complicated theory discussed in the previous section of this chapter (based on
certain assumptions).

Appendix 1

Proof of the absolute and uniform convergence of the series (72)

The equation for bs, in (73) gives

2
[beonl = = (1ban-s] + [ben-s), (A1)
4n2
considering the signs of bz, #=0,1,2, .. .. For the desired proof, one may seek
a majoring series. First suppose that
Bo
[bon] A (a2
nll

holds for two subsequent values of #, c.g., m—2 and #;,—1. Then, in a first
step, chose B such that (A.2) also holds for ban,. If this is possible in a general
fashion, it follows that (A.2) holds for all bz, with an appropriate B, if one (in a
second step) also can show that it holds for z=1and #=2. This then leads to a
majoring seties.

Now, (A.1) gives, for n=mn:

2 ni— ny-— 2 ni-— n
b < PEA_BI B PR ()

= 4n} (0, —T1)ma-t (ny—2)m1-2 4n,n ng —2 n—1

(A.3)

5’(-
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Taking the derivative, one easily realizes that the function [#/(r —2)]* is con-
tinuously decreasing for #>> 2. It is actually <C27 fot #>3. Therefore

2ABn;-2
7 PRADT

41-11111

(ben,| < 2 ( B +1), 0 >3, (A.4)

I’ll—-1

If one now wants (A.2) to hold for #=#,, one must have

Bn

2 —2
g7 PRAB™ ( By 1) <A (A.5)
4I11n1 4 —1 Il]_nl
(o)
27 , B _ 27
Bz —__pt > —pf, (A.6)

which is satisfied if

27pt V 27pk 27
> , m>3. (A7
= 8(ar—1) * 8(nl _1) Z P = A7

Putting #; = 2, the right side in (A.7) becomes larger than for all #,>>3. One can
therefore generally choose

2
B 270E ] +V 16
8 27pt

) =B, (A.8)

which makes the above discussed induction possible.
Especially for #=1 and #=2, one wants

Ibg| = p4k < AB, (A.9)
and
Ibe — (1 + pk) l: B, (A.10)
Both these equations are satisfied if
2
1 16 T+ G
A > max E s A1
7, V " (2Tpy): +V1+ 16
T 27pd)

Therefore one can find constants 1 and B so that (A.2) holds for all #>1. This
means that the absolute values of the terms of the series (72) are majored by the
terms of the series

AS B_:xzn=A 3 a(x). (A.12)

n=10 n=1
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The latter seties is convergent, since (CAUCHY’s quotient criterion)

2 n-1
on __ Bxt (1 _ 1) (A.13)

on—1 n n

approaches zero as #—c0 (because (1—1/m)n-1—>1/e).

This tesult follows for all py # 0 and is trivial for p,=0. Furthermore, one can
take x = 1 in the majoring series, making it independent of x and px but still con-
vergent and majoring (72) in the whole actual range of x-values, which shows
that the convergence of (72) is uniform in this range. More generally, one may,
for any interval x; << x < x3 take x = max{|x1|, [x¢|} in the majoring series and in
the same way show the uniform convergence in that interval, however large ||
and || may be. Therefore the convergence is uniform for all real x and all real

Pr.
Q.E.D.

Appendix 2

Proof of the uniform convergence of the series (66)

In Chapter 8 the «cup mixing concentration» was calculated through termwise
integration and in Chapter 10 differentiation symbols and integral symbols were
exchanged. Such operations are allowed if it can be shown that the series (66) is
uniformly convetgent.

According to (93) in Chapter 8, one has, with a vanishing error as px— 00,

wa —ApEl? [1 + Vg cotg (PZ—TC — %T—c)], (A.14)

whete A4, ~~ 0.4593. Therefore, fot any & >0,
4 8
g+4(1<—1)—algpkg3+4(k—1)+sl, (A.15)

for all px> pi1, where g pi1 << 00. (A.15) follows from (A.14) and 0 <w < c0.
Furthermore, from (85) and (68),

2Cow
—_ . A16
A _oP P (A-16)
P [ 51; axap] -

=1
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Using (92), one finds for any 2 >>0:

pm g P
e P ol <[ 28],
max{ 2Py f:os(4 3) 82} |Wap+axap oop
< At | cos (P%"_g) Fes, (A1)

where A== (25/31)/[4(3)*/3(1/3)!], for all pr> prs, H prz<< o0, except when the
cos-function becomes exactly zero. The latter occurs when pr=10/34-4#, or

10 2/3
war0.9186 (? +4mc) . n=0,41,42,..., (A.18)
using (93). The approximation in (A.18) is better, the larger #.
The «asymptotic exactness» of (A.14) means that for any w < co there is a po << 00
such that the cos-function in (A.17) is # 0 for all pz > po. Therefore there is in any
case a cettain pygs, for which po << prs < 00, such that (A.17) holds for all px > ps.
The Fourier coefficients can now be estimated. Clearly, there is a prys<C 00, such

that for any g, >0:
2Cow 2Cow

—eg| <]ak| <
cos (IE ——E) cos (PE —E)
4 4 3

3) | Py’
for all pp> pra>po. The estimations (A.19) and (A.15) show that there is a
Prs << 00, such that for any € > 0:

—|— €3, (Alg)

max |0,

P A

2Cow
< Ay ° g\ e—Dz[4/3-8+4 (k-1)1%/2v1}

As [g 1Akt 1)] v

r
akPk (#) e"'"Dpr:/ 2‘-,-1.21’.
ty

(A.20)

fot all px > prs > po. Here As e (0,00) is a constant upper limit for |Pr(x)| as x ¢
[0, 1]. Such a limit exists since Appendix 1 shows that the functions Px(x) can be
developed in uniformly and absolutely convergent power series for any x and p,
since (92) shows |Pg(1)] to have a general upper limit, since Px(0)=1 and since
(92), (103) and (104) show |P(x)| to have a general upper limit.

On the right side of (A.20) is then the general term of a convergent series which
for pr > prs<< 00 majors

Qo

Y

k=1

r
a1 Px (—) e—Dzpfievr}
I

: (A.21)

The convergence of the majoring series follows from, e.g., CAUCHY’s quotient
criterion for all g > 0 and therefore the series (66) is absolutely convergent for any
r € [0, ] and all £>>0.
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ar can be even further estimated as
2Cow

[;’ 4 —1) —] {A; [; +ak—1) —s]”s——s}

Iakl < ) (Azz)

which shows, using, e.g., the integral criterion, that (A.21) is convergent also for
z==0. Furthermore the exponential on the right side of (A.20) can be exchanged
for 1; combining this with (A.22) gives a convergent majoring series which is
independent of 7 and g. This proves the uniform convergence of the series (66).

Q.E.D.
Appendix 3
The inverse of C, in (141)
To find the inverse of
w 1
fs)=—— (A.23)

 s3(s18—a)

whete f(s) = L£{f(3)}, one may first determine the inverse g(3) of

1 s2/3-} asl/34-a2
ge)= 15— = — (A.24)
sl/s—a s—a
with which, from (A.23),
z
fz)=1+a f g(2) dz (A.25)
0
for 0.
The inversion theorem of MELLIN-FOURIER gives
’ 1 c+ico d
s
= S2 . A.26
80=24 | T (A.20)
c—icw

As is clearer from (A.24), the integrand has a single pole at s—= 43 and a branching
point at s=0. One may therefore chose an integration path as shown in Fig. Al
since it encloses the pole and avoids the branching point, and study the behaviour
as R—oo. Using notations defined in Fig. A.1, the residue theorem gives
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y =Ims
A
- --y=R
I7
R
lg
33 X=C
& ¥ »x=Re s
Al
I
1
< -

esz ds 7 . .
— f — 3 T+ 2ni Res(a®) > 2mig(z)  (A.27)
st3—a =4

c—iR

as R—oo. It is easily shown that [y, Iy, I;—0 as R— 0. To prove the same for 7,

the integral may be separated in two parts, [, =134 13: .
—e—1t[2
eRz cos® eiRz sing .
Ii=i | = —— . Reiodg, (A.28)
(Rei®)1/3 2
—f2

whete 0 <<e € /2, and I being the integral from —e —=/2 to —n over the same
integrand. It is again easy to show that /5-»0as R—c0 for g >0 and a givene,
because cosg < 0 in the actual interval. For a sufficiently large R one can estimate

I4
I3 as 2 e

et 2 R Red2 § A.29
W< [ mrpRle<gm— [P d,  (A2)

—nj2—e 0
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where {= — (@ +/2). The first estimate results from geometrical considerations
in the complex plane, using ¢/3~ —mx/6 in the interval ¢ € [—n/2, —e—m/2] and
the fact that « is real and non-negative. The second estimate results from cosg=
—siny in the actual interval and, further, from §/2 <sing <¢ forall y € [0, €] if
¢ is sufficiently small. Therefore

3| <

1
R1s_az (1 =70, (A-30)

which shows that 7o—>0 as R— o0 for >0 and a sufficiently small £ > 0. There-
fore I;—0 and, analogously, /g—0 as R —c0.
As a result, g(%) is determined only by 73, I5 and the residue. In /5 one has s= ||

exp(—im) and in I5 one has s=|s{ exp (im), giving

o x2/3} ax1/3

in the limit as 2—>00. The residue is

Res (a?) = 3a2ea% (A.32)
and, finally,

S dx, (A.33)

g (2) = 3aren’s V3¢ f e—xzl 00

or, according to [10] (integral 3.383.10 on p. 319),

g(z) = 3a2ea3z—%ea3z [r (g) T (— i a3z) 4T (%) r (— % aaz)] . (A34)

introducing the incomplete factorial function I'(e,); in this case ([10])
b
T(—a, b)= J et dt=a f e—2dt (A.35)
b 0
(this is different from [17], the T (a, B) of [17] is y(e, p) in [10]).
Now the inverse of Cy in (141) is
Cow= —Co £(2), (A.36)

with f(3) given by (A.25) and using g(3) from (A.33) or (A.34) and 1l/a=
A(—1/3)L
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The Larrace transform of P, (V)_() and P, (x) and a convolutional expression

Introduce x=]/£ and Py(x)=Wi(y). Then, from (67),

Ay Wi+ 4W i+ pi(1 —) Wi =0. (A.37)
After LAPLACE transformation:
(pk —4s)Wi+ (pf —4s) Wi =0, (A.38)
where Wi(5)= £ {Wi(3)}. The solution is
Wi A (A.39)

(25 — pi)1/2-Du/4 (25 + pro)t/2ipe/t
where A is a constant. If one requires the initial value

Wi(0) = Py(0) = 1 =lim sW, (A.40)

§—>Q0

one must take .4 =2. Hence

1
W= (S B pk)l/Z—pk,’q, (5 N Pk) 1/24p, /4 (A.41)
2 2 '
or
s—PelF
Zu ()} = ! 21, (A.42)

Vsz—li% s -+ P
4 2

According to the relation between the LAPLACE transforms of f(#)and f1 (VzT) one
thus finds the transform of Py(x):

e
F{Put)) = f e 21| an. (A43)
V —Pk/4 ok sz

For an interpretation of (A.42) one may seck the inverse

— px/4
£(6)> (S P/ 2) . (A.44)
S+ px/2
Starting with
1 tv—l )
e—at, (A.45)

-
s+ T)
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one finds, from the variable transformation sr—1/s and differentiation,
( ° ) Lo ( V:" J: (2y/t) T e ds,  (A4)
— - _ T T, .
14 as o f £ I'(v)
0

v 3 t

( : ) PO Y e, (7) (A.47)
14-as o’ te¥ ' o

where M, (%) is the WHITTAKER function of the first kind and §(#) the Dirac

function (unity impulse function). Again performing a variable transformation

(z Iiﬁz) 3 \;’ M, 12 (g) (A.48)

Hence, (A.42) may be interpreted as

- 1
P (VX) =1Io (%{Z) “%‘{IO (BIZ(—X) *)—C My, 12(px)s  (A49)

where I, is the modified BessiL function of the first kind and order zero and *
denotes convolution with respect to the variable y (it may here be of interest to
note that /o(z) = Mo, o(23)[]/2%, according to [10]).

LaprACE formulae applied here may, e.g., be found in the following references
(not included in the main list of references):

or [10]

s—5—1/2x, one finds

Ancot, A.: «Compléments de Mathématiques 2 'usage des Ingénieurs de I’électro-
technique et des télécommunications», Collection Technique et Scientifique du C.N.E.T.,
Fditions de la Revue d’Optique, Paris, 1957.

DoEersch, G.: «Anleitung zum praktischen Gebrauch der LarrLAce-Transformation und
der Z-Transformation», R. Oldenbourg Verlag, Munich and Vienna, 1967.

Appendix 5

Some formulae and diagrams for practical use

Introducing
©iNzD
= , A.50
=" (A.50
where ® = Nrriv, one can write (88) as
Can=Co 3" oL (A.51)

k=1
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Diagrams for py(w) are shown in Figs. 7 and 8 (see Chapter 8). Fig. 9 shows pa(w)
in a linear diagram. A more useful diagram for pe(») is given in Fig. A2,

Using the formulae of Chapter 8, the coefficients o4 and as can be calculated. Fig.
A. 3 shows a;(w) and Fig. A.4 shows aa(w).

For the LEvEQUE approximation, one can rewrite (146) as

1 G I8 7 97 242, (A.52)

Co w?

where
Z.=1.473 w1/, (A.53)

Using the diagrams mentioned, one can determine the regions of validity of the
three actual approximations — the one-term and two-term approximations of
(A.51) (k=1 and £=1, 2, resp.) and the LEVEQUE approximation. Table 2 gives
these tegions in terms of ¥ and Cin/C, for some different values of w. These re-
gions are here so defined that the second term of the series (A.51) is 29, of the
first one at the limit of applicability of the one-term approximation (for the region
. given in Chapter 11 at w = oo, the second term is 2.79%, of the first one) and that
the two-term and LEVEQUE approximations give equal values at their mutual limit
of applicability. One finds that, under this definition, the one-term approximation
_ is applicable for all { when »w < 1.5.

Table 2
Applicable approximation:
w one term for two terms for LEvEQuE for
L> CnfCo<< T> CmfCo< < Cm[Co>

o0 0.048 0.59 0.0071 0.85 0.0071 0.85
100 0.048 0.60 0.0081 0.84 0.0081 0.84
50 0.047 0.61 0.0091 0.84 0.0091 0.84
10 0.041 0.68 0.0111 0.85 0.0111 0.85
1 0 1 0 1 0.00065 0.99

0 0 1 0 1 — —

Approximations for large and small w

For large », one finds:

' 2.945
p1 A 2,705 — — (A.54)
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20 3.59
parv . — T (A.55)
3 W
0.82
M5y . 0.990) (8.36)
(=)0 50)
w w
0.9
oz A ! ) (A.57)
2.0
1——
W
and for very small w:
p1~2)/w, (A.58)
16
Pt o +40.393 w, (A.59)
2
ay o LT 02 (A.60)
1+0.47 we
az &~ 0.0207 w2, (A.61)
The LEVEQUE approximation becomes
1— %il ~ 4.06 §2/3 (A.62)
for large » and
Cm
1— o~ 4 wg (A.63)
for small .
Commentary to (206)
The derivative of the bracket in (200) is
’ 2
4 (v dps —pi) =w ) (A.64)
dw\ dw dw?

As is seen from Fig. 9, and can be verified from Chapter 8, the second derivative
of py is always negative. Therefore the bracket has its largest value for small w.
This value is negative, according to (A.58):
wib_
dw

pr & __Pzi ~—w. (A.65)

This means that the bracket is negative for all » > 0.



List of notations

The following list contains the more important of the notations used. It does not
include a number of constants, coefficients, parameters, auxiliary functions, etc.,
used in the courses of mathematical developments. Conventional mathematical
notations and some used only in the Appendices are also not included.

A
Ae

t

e

O OO

m

OO0O0

ey o g e
= # P

LR e

225» Z.

total membrane area in Ch. 16
cross-section atea of container for capillary bundle
total cross section area of immersed capillary bundle (with interspaces)

relative concentration of solute; C = 1 means 1009, concentration
mean value of C over capillary cross-section

Larrace transformation of C with respect to z

bulk or «mixing cup» concentration in dialysate

bulk or «mixing cup» concentration in capillary

concentration in dialysate

concentration at inner surface of capillary wall

initial concentration in capillary at z = 0

concentration at outer surface of capillary wall

diffusivity or diffusion constant in the fluid in the capillary
diffusivity or diffusion constant in the capillary wall material

thickness of capillary wall (or membrane, in general)
l/—_l, imaginary unit

diffusion flux vector

(n = -1, %, 0 or integer) Bessel function of first kind and order n
diffusion flux at inner surface of capillaty wall

Bessel function of first kind and order ip

a Bessel wave function

length of capillary
solute removal by dialysate

unity vector normal to a surface
number of capillaries
norm of the eigenfunktion Py

6 Sigdell
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p eigenvalue parameter in Ch. 8

px  eigenvalue in Ch. 8

po  fluid pressure outside capillary

ps  pressure in dialysate

pout fluid pressure at outlet end of capillary
P general eigenfunction in Ch. 8

P transformed P in Ch. 9

Pr  eigenfunction in Ch. 8

Q  substituted P in Ch. 9

£ radial coordinate

r unity vector in the r-direction

11 inner radius of capiilary wall

r;  outer radius of capillary wall

ts  outer radius of «equivalent annulus» in Ch. 17

. R eigenfunction in Ch, 5

s LAPLACE variable, also eigenvalue parameter in Ch. 7

Sk eigenvalue in Ch. 7

S sutface of arbitrary volume in flow field with element vector dS
t time coordinate

U ultrafiltration parameter in Ch. 13

v simplified notation for v, when vr = 0
v flow velocity vector

v mean value of v in capillary cross-section

vr  radial component of v in capillary

vs  velocity of dialysate flow (positive for countetflow)
Vs mean value of vs over cross section of flow

ve  time-varying v

.  mean ultrafiltration flow velocity in capillary wall
vz  axial component of v in capillary

w W = vyr;/D, a relative wall permeation parameter
We w fOI‘ Y = Yc

X X = 11y, also general coordinate
y y = 1-x, also 1;,—r in Ch. 11 and general coordinate
y unity vector in y-direction

Yip = Bessel function of second kind and order ip
Y, Bessel function of second kind and order zero

v4 axial coordinate



Bx

Yo
Ye
Ym
Ys
Yt
Ym1
Ym2
Ysm

8IIIII

Oy
@,

List of notations

eigenvalue in Ch. 5

permeation of capillary wall, defined in Ch. 6

surface-to-bulk permeation for dialysate in capillary interspace
combined permeation, defined by (228)

bulk-to-surface permeation for fluid in capillary

vs = yIi/rs, yreferred to capillary outer surface

total bulk-to-bulk permeation defined by (251)

asymptotic value of ym

value of ym at inlet end

Ysm = YmL1/fs, Ym teferred to capillary outer surface

KRONECKER’s symbol

eddy diffusivity for momentum transfer
eddy diffusivity for solute transfer

general eigenvalue parameter
eigenvalue in Ch. 12

viscosity of fluid in capillary
apparent viscosity of blood due to the FAHRAEUS-LINDQuUIST effect
asymptotic value of ua

£ = px, also variable in GREEN function

fluid densit

y
positive zeroes of J,
positive zetroes of J;

unity step function

83

total liquid (blood) flow through capillary bundle (in Ch. 13 also flow in 2

single capillary at entrance end)

total dialysate flow

clearance

total ultrafiltration flow through a capillary wall
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Index

accuracy of approximations: see approxi-
mations, accuracy
annulus, equivalent 58
apparent viscosity 52
approximations, accuracy 29, 38-40, 43—
44, 44-46, 52-53, 79
for BesseL functions 21, 22
LEVEQUE: see LEVEQUE approximation
other 14, 15-16, 17, 21, 23, 28, 32, 34,
35, 39, 47-48, 52-53, 61, 62, 63-64,
65, 79-80
area 56-57
artificial kidney: see dialyzer
axial diffusion 45
see also: derivative, second axial

basic equation 10--11

boundary conditions 12, 13, 20, 44, 45, 58,
59

bulk concentration: se¢ «mixing cup con-
centration»

bulk flow 12, 20

capillary dialyzers 7, 9, 53-57
length 47, 53-57
number 53-57
radius: see boundary conditions, Poi-
sEUILLE flow and optimization
wall: see wall and permeation
carrier fluid 11
clearance 53
closed set 37
concentration, mean 14, 22
measure 10
«mixing cup», bulk: see «mixing cup
concentration»
outside capillaries 15, 16, 23, 50-51, 57-
67

convergence 14, 22, 28, 67, 69
counterflow 57
critetion 38, 46

derivative, second axial 16, 25, 38-40
dialysate concentration: se¢ concentration
outside capillaries
dialyzer, capillaty 7, 9, 53-57
flat conduit 9
diffusion, axial: see axial diffusion and deri-
vative, second axial
coefficient, constant 11
equation 11, 12
flux 10-11, 18-19, 47-49, 50, 65
wall 18-20, 4446, 47-50
diffusivity 11
eddy 65

eddy diffusivity 65
eigenfunctions 13, 17, 20, 25-29, 32, 34-37,
45, 59
eigenvalues 13, 17, 20, 21, 25, 28, 32, 45, 59
equation, basic 10-11
diffusion 11, 12
integral 37, 42, 48, 60
NaAvVIER-STOKES 52, 58
equivalent annulus 58

FAuraeus-LINDQuisT effect: see apparent
viscosity

Fick’s first law 11

flat conduit dialyzer 9

flow 47, 49, 52-53, 5354, 56-57, 60, 66—-67
bulk, plug, uniform 12, 20
parabolic: see PorseurLLe flow
profile 52-53
resistance 55

flow-limited state 54



88  Index

flux, diffusion: see diffusion flux
Fourier-BESSEL series 13-14, 20, 26, 37, 45

GRAETZ problem 7, 16-17, 43, 48
GREEN function 37

integral equation 37, 42, 48, 60
interspace 57-66

LapLace transformation 42, 48-50, 50-
51, 60-61, 71, 74-75

LEVEQUE approximation 9, 38, 4044, 71-
75,79

mean concentration 14, 22

mean velocity 15, 16, 47, 60

membrane area 5657

membrane, idealized and real 20

«mixing cup concentrationy 17, 32, 38, 43,
51, 53, 59-62

NAVIER-STOKES equation 52, 58

optimization 53-56

otthogonality 25, 36

outside concentration: see concentration
outside capillaries

permeability, infinite 12, 16
very low 15
wall: se¢ permeation

permeation 7, 15, 19, 42, 47-48, 59-60,
62-66

plug flow 12, 20

Poisevirie flow 16, 18, 25, 40, 43, 49, 52—
53

pressure-limited state 54

«pseudocapillary» devices 7

recirculation 66

repumping 66

requirements on artificial kidney 54-55
resistance to flow 55

second axial derivative 16, 25, 38-40

surface area 56-57

surface concentration:
outside capillaries

see concentration

-thermal convection 8

turbulence 18, 64-66

ultrafiltration 47-50
uniform flow 12, 20

velocity distribution: see flow profile and
PorseuirLe flow

velocity, mean 15, 16, 47, 60

viscosity 49,52, 58
apparent 52

wall 18-20, 4446, 47-48
concentration 18-19, 41-42, 44-46, 47—
50, 50-51, 60
thickness 18-19, 44, 4748
permeation: see permeation



