See note at the end of the text

74

SECTION 2—Instrumentation and Methods

Properties and Limitations of Electronic Instrumentation

THE PURPOSE OF THIS CHAPTER is to describe certain prop-
erties and limitations of electronic instrumentation to the
user who is not an expert in electronics and who may have
relatively little theoretic knowledge of electronics in gen-
eral. Mathematical exposés are reduced to a minimum;
when used, they are accompanied by verbal explanations.
Many graphic demonstrations are used. Still, some mathe-
matics cannot be avoided, although the aim is rather a
phenomenologic description.

This chapter deals with “amplifiers,” but in a general and
broad sense. The term ‘“amplifier” here means almost any
linear electronic device with an input and an output. It also
may be a filter or an attenuator (power amplification less
than unity means power attenuation) and may even include
a recorder (the trace on a paper as output) or a transducer
(e.g., mechanical input).

Frequency Characteristics of
Broad-Band Amplifiers

The term broad-band amplifier will be used to character-
ize a linear amplifier having constant amplification within a
certain frequency range, which is not small as compared to
the individual frequencies within it. The narrow-band am-
plifier, in which the band of constant amplification extends
between two closely spaced frequencies, will be discussed
later.

First, the concept of amplification. By this, we mean the
output and input quotient between sinusoidal quantities.
Limiting to the case in which both these quantities are volt-
ages, this is:

20
A(f) = o)
where A(f) is the amplification and e (f) the sinusoidal out-
put voltage, corresponding to a sinusoidal input voltage e,(f),
each taken as functions of frequency. These quantities are
given in complex notation. In this notation, a sinusoidal
signal E sin(27ft + ¢) is written:

e = Eel® = E cose + jE sing (74-2)*
where j = V=1, E = amplitude and ¢ = phase. This makes
it natural to distinguish amplitude 4| and phase /L of the
amplification:

(74-1)

A=|Aleid (74-3)t

where |4 and 4 vary with frequency.
The term “amplification” can, of course, be generalized

*This actually is the definition of the exponential function with imaginary
exponent: “‘e raised to jy plus j times sine of ¢.” e = 2.718 281 828 459 045
23 . . .. the base of the natural logarithm.

TWith properly varying “¢,” this is an analogy to equation (72-2), ex-
pressing A as the magnitude of A4 times the exponential of the product of j
with phase of 4.
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to any input and output quantity, but 4 is dimensionless
only when those quantities are both of the same dimension,
as above. The following discussion holds for most linear
electronic devices, even if input and output are not volt-
ages.

As a law of nature, the range of constant amplification
cannot extend to infinite frequency; often the range is inten-
tionally limited to a determined range, as is almost always
the case in biomedical applications—except for recorders,
for example, where the range extends to the natural limita-
tions of the system; this range usually is made entire use of
and sometimes, even then, it still is insufficient. Amplifica-
tion is thus gradually reduced as frequency increases above
a predetermined range, limited intentionally or naturally.
This gradual decrease of amplification is called roll-off and
can be shown to amount asymptotically to 6 n db/octave, or
20 n db/decade, where n is an integer for discrete compo-
nent amplifiers. An octave is the range from one frequency
to its double value; a decade is the range to ten times an ini-
tial value. If the range of constant amplification does not
extend down to d-c (zero frequency) an analogous low-fre-
quency roll-off will occur, with amplification falling with
decreasing frequency, also following a 6 r db/octave
asymptotic behavior. Actually, amplification can never be
exactly constant over any range, but its variation can be
kept small within the main part of a determined range.

As a measure of range of “constant” amplification, one
generally chooses the 3-db-bandwidth. This concept will be
used throughout this chapter and will be referred to simply
as bandwidth (in some technical applications, one also uses
the 6 db-bandwidth). This bandwidth is the difference be-
tween the upper and lower cutoff frequencies at points at
which A has fallen 3 db, i.e., by a factor of 1/V2=0.707,
below its mid-range (maximal) value. The corresponding
frequency range is called a passband. The upper and lower
cutoff frequencies sometimes are called “half power fre-
quencies,” as a 3-db reduction of the output voltage corre-
sponds to halving the power in a constant load.

The frequency characteristic of an amplifier may exhibit
“constant” levels within several bands. In such cases, gen-
erally only the band with the highest amplification is used
as a passband. The amplifier characteristic in terms of the
variation of |4| with frequency often is plotted in a log-log
diagram (or, equivalently, a lin-log or semilog diagram if |4|
is expressed in db on the linear axis, |4| in db is 20, Jog|4 ).

The asymptotic behavior mentioned above means that
this characteristic can be approximated by a polygonal
combination of straight lines (piecewise linear approxima-
tion), being horizontal or sloping =6 n db/octave. Such a
representation is called a Bode diagram. A representative
example is shown in Figure 74-1, where the straight lines
are continuously drawn and the exact amplitude character-
istic given by the dashed curve. In Figure 74-1, the upper
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Fig. 74-1.—An example of the characteristic of an amplifier. Solid line: asymptotic characteristic; dashed
curve: true characteristic.

and lower cutoff frequencies are marked by f, and f, re-
spectively. Hence, the bandwidth is B = f, — f,. The points
at which the horizontal passband line in the asymptotic rep-
resentation meets the upper and lower roll-off asymptotes
are called corner frequencies. If the asymptotic roll-offs are
6 db/octave on both sides of the passband within sufficiently
broad ranges, corner and cutoff frequencies coincide. If the
asymptotic roll-offs start at 6 n db/octave, the cutoff fre-
quencies will be related to the upper corner frequency f,,
and the lower corner frequency f,, as

£, =f V2 =1 (74-4)*
and
f= o (74-5)t
V2 -

where n may be different for f, and f,.

OPERATION NEAR OR OUTSIDE THE
CUTOFF FREQUENCIES

As long as the sinusoidal signal remains well within the
passband, the output corresponding to a constant-amplitude
input also remains at constant amplitude. As a cutoff fre-
quency is approached, the output amplitude is gradually
reduced to a minimal value (at the cutoff frequency) of
1/V2 of the mid-passband amplitude. As the frequency is
shifted to outside the passband, output amplitude falls off
faster according to the roll-off. Therefore, a change in ampli-
tude of the output signal is necessarily caused only by a pro-
portional amplitude change in the input signal as long as the
signal remains well within the passband. Near the ends or
on the roll-off, the change could also have been caused —
partially or totally — by a shift in the frequency.

For some purposes, such as for the improvement of
phase behavior, one may raise the amplitude (within limits,
e.g., =3 db variation in the passband) somewhat, near the
cutoff frequencies, before reaching the roll-off. If the ampli-
tude thus increases first before going down 3 db, the in-
passband variation of amplitude with frequency is even
greater, near the cutoff frequencies. (Compare to the de-
scription of second order systems in Chapter 15).

*The steeper the roll-off the lower the f, for a given f,,, as f, is f,, times

the square root of the n:th root of 2, minus 1".
tThe steeper the roll-off the higher the f,, for a given f,,.

PHASE CONSIDERATIONS

Nearly constant amplification within the passband should
also be accompanied by a fairly constant phase shift /4.
between input and output. For most amplifiers, this phase
shift can be shown to be practically zero around the mid-
passband. (Networks for special filtering purposes, having
other, generally varying, phase shift within a band of con-
stant /A, may be constructed but will not be considered
here.) The variation of the phase /A near the cutoff fre-
quencies generally is larger than the amplitude variation.
As an example, the characteristic of an RC-coupled ampli-
fier with —6 db/octave asymptotic roll-off in a broad range
above the upper cutoff frequency, f,, is sketched in Figure
74-2, in a region around f,. The behavior is analogous at the

lower cutoff frequency for a 6 db/octave asymptotic low-
frequency cutoff.

The phase /4 can be considered constant only within a
central part of the passband (or for frequencies < f,, if f, =
0), much smaller than the bandwidth, for an amplifier with a
characteristic as sketched in Figure 74-2. If the asymptotic
roll-off above f, (or below f)) is faster than 6 db/octave near

f,» the phase shift 4 of the signal varies even more within

the passband. With special circuits, the situation can be
improved somewhat, but it is much easier to build amplifi-
ers with non-constant but approximately linear phase char-
acteristics within their passbands. Such a characteristic is
of considerable importance for low-distortion amplification,
such as for aperiodic signals, discussed below.

These phase considerations show that comparisons be-
tween signals of the same frequency, amplified in different
amplifiers, can involve large errors if the amplifiers are not
identical. If phase shift comparisons are to be made be-
tween two signals, a given frequency and one of its multi-
ples, this generally can be done with good accuracy only if
both signals fall much nearer the center than the ends of the
passband. One can, of course, correct for errors due to
phase shift within the amplifier if its phase characteristics
are clearly known.

PERIODIC SIGNALS OF NON-SINUSOIDAL
WAVEFORM

As is well known, periodic non-sinusoidal signals can be
represented by or synthesized from a series of harmonically
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Fig. 74-2.—The characteristic around the upper cutoff frequency f, for an RC-coupled amplifier stage. Solid lines:
asymptotic characteristic; dashed curves: true characteristic.

related sinusoidal components (i.e., having frequencies that
are multiples of a basic frequency), a Fourier series:

st) =3 la, sin@kafyr) + b coskaf,n] (14-6)*

k=0
where f, is the (basic) frequency of the periodic signal s(7).
When amplifying such signals, it is, of course, important

that all relevant components fall well within the passband
of the amplifier. The relevant components are the first N
components, which are needed for a good approximation, as

N
s = la,sinkaf,r) + b, cosQkaf,n] (747t
k=0
Because of the intentions of this chapter, mathematical

Fig. 74-3.—Gibbs’ phenomenon, caused by truncation of the Fourier series for a square wave.
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*Any (practical) periodic time function can be synthesized from a
(generally infinite) number of sinusoidal functions with proper amplitudes
(and phases). "s, function of ¢, is the sum, from frequency zero to frequency
infinity, of linear combinations of a sine and a cosine of the same frequency,
all frequencies being integer multiples of £,".

1The higher-numbered components in equation (74-6) have less influence
and may be ignored from a certain number on with only a minor error in the
representation of s(7). "s(f) is approximately equal to the sum from £ = 0 to
k=N.. "
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reasoning will be kept to a minimum. Therefore, the influ-
ence of the amplitude and phase characteristics on a period-
ic non-sinusoidal signal will be discussed only briefly in the
text, being further illustrated by some examples.

A sharp cutoff in the amplitude characteristic will more
or less truncate the Fourier series for the periodic signal. If
this occurs well above Nf,, where N is defined by equation
(74-7), the influence of the amplitude characteristic will be
negligible. But if it occurs at a lower frequency, the signal
may be strongly distorted. The distorting effect is higher in
the vicinity of the fast transition parts of the input signal. In
the extreme case of a square wave, a pure truncation
(infinitely sharp cutoff) of the corresponding Fourier series
leads to the appearance of Gibbs' phenomenon in the out-
put signal, as illustrated in Figure 74-3. This phenomenon
is related to ringing in an amplifier.

Normal amplifiers generally will not show the extremes
as sketched in Figure 74-3; also, ‘“‘ringing” cannot occur
before the transition with any realizable electronic amplifer,
since it cannot have an infinitely sharp cutoff. Nevertheless,
it should be kept in mind that oscillations observed after
fast transitions in the signal could be caused by “‘ringing” in

Fig. 74-4.—Influence of the amplifier response on
signals (RC-coupled stages). in A: for a square wave; in
B: for a triangular wave. C.F. = corner frequency, R.O. =
roll-off, L.P. = low-pass (influence of a high-frequency
roll-off), H.P. = high-pass (influence of a low-frequency
roll-off). (Photographed from oscillograph tracings.)

the amplifier. Another effect is a smoothing of the transi-
tion, which will be discussed further in relation to rise-time.
Clearly, peaks and sharp “edges” in the signal may be ob-
scured by such “ringing” or more or less erased by a smooth-
ing effect. As is discussed further below, details that oc-
cur during short or fast parts of the signal are related to
higher frequencies in the Fourier series. This may also be
understood from equation (74-6). Frequency components
considerably lower than I/t, cannot contribute significantly
to details in the signal occurring during shorter times than ¢,
as the sinusoids associated with each of those components
vary too slowly. As an example, a bandwidth of the order
of a few hundred Hz may be needed to be able to observe
fine details in the ECG, such as small changes in the Q, R
or S peaks. A narrow bandwidth will always round off the
peaks and may obscure or erase details of peaks or steep
slopes, although the main form of the QRS complex may be
well preserved.

The influence of a phase shift on a signal component in
equation (74-6) is a translation of the component along the
time scale, having the effect on the signal of adding the dif-
ference between the translated component and the true
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component (both of which are sinusoidal time functions of
the same frequency). Damping or amplification of a single
component produces a similar effect. When all components
together are subject to varying phase shifts, such effects
may average out to a mere delay of the entire signal without
distortion of its form. This occurs when the phase shift var-
ies linearly with frequency within the important frequency
range, as will be discussed further below (a delay of time 7
of the signal appears, conversely, as a phase shift 2k#nf 7
the k:th component in equation [74-6] as is easily
seen).

Similarly, a low-frequency roll-off at or above the basic
frequency has an effect comparable to subtracting sinusoids
of the frequencies falling in the roll-off region (with less
amplitude and phase shift as these frequencies approach the
lower limit of the passband).

The nature of such influences is best demonstrated by a
few examples. Figures 74-4 and 74-5 show the influences of
amplitude and phase characteristics on square and triangu-
lar waves. Due to practical difficulties in producing these
oscilloscope tracings, Figure 74-4 does not show the influ-
ence of variations in amplitude response alone, but coupled
with an associated variation in the phase response (see Fig.
74-2). Figure 74-5, on the other hand, shows the influence
of a mere phase shift, realized with an “all-pass filter”
(having constant amplitude |4| but varying phase 4 with-
in a broad range).

CASCADED AMPLIFIERS

If amplifier stages are connected together in a series ar-
rangement, so that the output of one is the input to the
next, they are said to be connected in cascade. The total
amplification of a series of cascaded amplifiers is the prod-
uct of all the individual amplifications. Here, one must gen-
erally consider the effect on the amplification of a single
stage, caused by the loading (input impedance) of the fol-
lowing stage and the source (output) impedance of the pre-
ceding stage; see the discussion on input and output charac-
teristics in a later part of this chapter. The above applies to
the cascaded amplifiers considered as a whole, i.e., with the
mentioned, total amplification.

If amplifier stages are cascaded, having identical amplifi-
cations A (considering the effects of input and output im-
pedances), the total amplification is

Ay = A" (74-8)

The asymptotic roll-off slopes in the Bode diagram of the
total amplification is n times larger than for A4. If the latter
slope is 6 m db/octave, the former is 6 mn db/octave near the
cutoffs, and we can find the relation between upper and
lower cutoff frequencies for 4,,; and A, using equations (74-
4) and (74-5). Eliminating corner frequencies, it follows:

Faor = fuk, (74-9)*
f[mt :% (74-10)*

where f, and f, are the upper and lower cutoff frequencies
of the individual stages and

l21/mn —1

kK=NZm =1

where m may be different for f, and f,. In the common case
that f, > f,, we find for the bandwidth of 4,:

(74-1D)F

*Equations (74-9) and (74-10) are similar to (74-4) and (74-5), but here
based on the one-stage cutoff frequencies and not on corner frequencies.

1The higher the n the smaller the k; the variation of & with » is not much
influenced by m. k is the square root of the quotient between the mn:th root
of 2 minus 1 and the m:th root of 2 minus 1.

Bt = Bk (74-12)

where B is the bandwidth of 4. The more general case is
derived from equations (74-9) and (74-10).

Time Response of Broad-Band Amplifiers

Whereas above we considered the influence of the ampli-
fier (its amplitude and phase characteristics) on periodic
signals, here we will consider the influences on aperiodic
signals, such as pulses, evoked responses, etc.

TIME-FREQUENCY RELATIONS

Events in a periodic signal, which occur rapidly or extend

over short times, are related to the higher-frequency com-

ponents in the Fourier series for that periodic signal. This

holds just as well for an aperiodic signal. For such signals,

the Fourier series (equation[6]) can be generalized to a
Fourier integral:

s(f) = f * S(Hern df (74-13)*

where S(f) is the spectrum of the signal, obtained as

S = f s(rye-2tdy (74-14)t
We no longer are dealing with a sequence of discrete fre-
quency components, but with a continuum, a frequency dis-
tribution, a spectrum. A spectrum generally is complex;
i.e., it can be separated in an amplitude spectrum [S(f)|

and a phase spectrum /S(f):
NG EING IR (74-15)%

The relation between input and output through the ampli-
fication A(f) is

SN =AP - SP (74-16)

where S, and §; are the spectra for the output and input
signals, respectively. This is a generalization of equation
(74-1); in this context, A4(f) usually is referred to as a trans-
fer function, since it relates spectra and not signals directly
(except in the case of a pure sinusoid). Still, A(f) has the
same function as in equation (74-1). Equation (74-14) can
be written

S(H = f s(t)cosmft)dt — j f s(Osin2mfydr (74-17)8
From this, we may see intuitively that a shorter time dura-
tion of the signal corresponds to a higher-frequency content
in the spectrum. The sinusoidal oscillations of the trigono-
metric functions in the integrals of equation (74-17) occur
at a faster rate the higher’the frequency f. These oscilla-
tions tend to average out at integration, especially where
there are more oscillations within the duration of s(z). Thus,
a fall-off of |S(f)| with increasing frequency generally is
expected and will occur faster and at lower frequencies the
longer the duration of s(s) (many oscillations of the trigono-
metric functions within s(¢) at a lower f). This can also be
shown in a mathematically stringent way; the result is that
the faster the variations in s(¢) the farther the spectrum ex-
tends into higher frequencies, and the more often s(#) oscil-
lates the more its spectrum concentrates at intermediate

*Mathematically, the integral is the limiting case of a sum; when the peri-
od grows indefinitely, equation (74-6) approaches equation (74-13), in a cer-
tain sense. s(f) is the integral from — o to o, of s(t) times the exponential of
j2aft, with respect to t.

tRegarding equation (74-13) as an integral equation, S(f) can be solved
into an unusually simple expression. Similar expressions hold for a, and by in
equation (74-6) (see literature).

$Compare with equations (74-2) and (74-3).

§Compare with equation (74-2).
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frequencies. The low-frequency extension of the spectrum
is related to the total area under the signal s(¢); in the limit,
putting f = 0 in equation (74-14) or (74-17):

S$(0) = f fdt (74-18)
i.e., the spectrum at zero frequency is related to the *“‘d-c
content” in the signal. One can show that, for low frequen-
cies, the spectrum approximately follows

S~ f " Aot - j2af f Tfindt (14-19)*

in most cases. (An approximation for very high frequencies
is much more difficult.)

é(t)

As a highly oscillating signal has its spectrum largely
concentrated around intermediate frequencies, a low-fre-
quency cutoff well below these frequencies will not much
influence the shape of the amplified signal, but the lack of
d-c response causes a shift of the d-c level so that equation
(74-18) is satisfied, i.e., the integral in equation (74-18) is
made zero (of course no shift occurs if this integral is al-
ready zero for the input signal).

Some examples of spectra are shown in Figure 74-6.

Obviously, proper amplification of an aperiodic signal is
achieved only if the amplifier lets the main part of S(f)
through without deforming it; that is, the main part of S(f)
should be contained in the passband of the amplifier. Below
we will show this in terms of the time behavior of the am-

Fig. 74-7.— A, the impulse function and its spectrum. B,
the step function and its spectrum.
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*The two first terms in a power series expansion of S(f) in equation (74-
14).
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plifier rather than its frequency behavior. For this purpose,
we first study two special, fictitious time signals (as they
never can be realized exactly in practice) of basic impor-
tance for the characterization of the time response of the
amplifier; these signals are impulses and steps.

THE IMPULSE FUNCTION AND THE
IMPULSE RESPONSE

The impulse function 8(¢) is a function *‘of zero duration
and unity area,” which can be thought of as the limit of the
pulse sketched in Figure 74-7, 4, as e — 0. Its spectrum is
constant:

d=>8,H=1 (74-20y*

Hence, we see, from equation (74-16), that the transfer
function A(f) is the spectrum of the output signal when the
input signal is an impulse function. The time function, cor-
responding to A(f), is called the impulse-function response.
If we denote this function by a(f), one can show (applying
the convolution theorem of the Fourier integral in equation
[74-16]) that the output signal s (r), corresponding to an
input signal s,(f), is given by

s, = f 50 a(t — x)dx = f st —x)alx)dx (74-21)F
for any given input signal s(f). Equation (74-21)
(convolution of f(r) and a(r)) expresses s,(¢) as a smoothed
version of s,(t) with the smoothing function a(?); s,(t) comes
out as a weighted mean value of s,(t) over the duration of
a(t), with a(r) as weighting function. Therefore, it is impor-
tant that a(¢) be short in duration as compared to important
events in s,(¢); otherwise, such events will be smoothed out
and more or less erased. The shorter the duration of a(¢)
the farther the extension of A(f) on the frequency scale,
as we have just found, looking at time-frequency rela-
tions.

Turning to low-frequency criteria, we find the following.
If there is no d-c response in the amplifier, the impulse re-
sponse will be (at least) biphasic or multiphasic or even a
damped sinusoid, of the type sketched in Figure 74-8. From
these sketches, we again see that a proper reproduction of
low-frequency components in the input signal requires a
sufficiently low low-frequency cutoff. If the low-frequency
cutoff is too high up on the frequency scale, the negative
portion of a(f) tends to average out slow variations (as the
integral over a(?) is zero) if these occur during times longer
than the duration of a(¢).

THE STEp FUNCTION AND THE
STEP RESPONSE

We first found that the impulse function response was
related to the smoothing or weighted averaging of the sig-
nal. Here, we will show another response, related to the
rounding off of fast transitions in the signal.

The step function U(¢) is a function of time that suddenly
jumps from zero to unity at r = 0 but otherwise is constant.
It is sketched in Figure 74-7, B, together with its spectrum
S,(f), which is:

VOS5, =350 + 757

The step responses of the amplifier has, from equations
(74-16) and (74-22), the spectrum

(74-22)

1 Af)
So(f) —ES(f)A(O) +_i2—ﬂf

i.e., its spectrum is A(f) weighted with //f, except for con-

stants and an impulse at the origin. One can show that this

response, which we denote a,(?), is given by

t
ay(t) = 10J’ a(t) dt, t>0

1 <0

where a(t) is the impulse response. The response of an
amplifier to any input can be related to a,. One can deduce,
for the output signal s (f) corresponding to an input signal
s{1) (its derivative is notated by s, ()):

(74-23)

(74-24)*

’

5,(t) = constant + J’ s () a{t — x)dx (74-25)F
where the constant is zero for an aperiodic signal applied
at t =0 (or any given time) and with a limited duration (or
fading off to zero as t— ). This means a smoothing of the
derivative of s,(f), which may stand out clearer when equa-
tion (74-25) is differentiated (using equation [74-24)):

s,/ ()= f s/ a(t —x)dx =

f s/t —x)alx)dx (74-26)%
corresponding to equation (74-21). A smoothing of the de-
rivative results in a reduction and round-off of high deriva-
tives and, hence, a slowing down of fast transitions in the
signal. This will be discussed further in a somewhat differ-
ent way below.

Fig. 74-8. — Examples of impulse function responses.

alt) for both curves:
Jatwdt=0

| N

Lower low-frequency cut off

*"3(t) gives the spectrum Sy(f) = 1".

+One may understand this heuristically by regarding s,(r) as composed of
a series of narrow pulses close to one another with corresponding ampli-
tudes, each pulse adding its individual response to the output (integral is a
limit of a sum).

alt)

| L
Higher low—frequency cutoff

*U(¢) is the integral of 8() and the same holds for the corresponding out-
put signals. The integral may be taken from zero to ¢ for 1 greater than zero;
if ¢ is less than zero, the a,(?) is zero anyway.

tAs for equation (74-21), one can regard the input signal as composed of
the sum of many small step functions, with amplitudes according to the de-
rivative, each contributing an additive step response on the output.

$Compare with equations (74-21) and (74-24).
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RisE-TIME OF THE AMPLIFIER

An important characteristic of the step response of an
amplifier is the rise-time. This generally is defined, for an
amplifier with d-c response, as the time it takes for the step
response to rise from 10% to 90% of its final value (the lim-
it as t+— ). This definition is illustrated in Figure 74-9.
Some other definitions also exist (such as rise from 0 to
90% or other values, or the slope of the steepest rise; also a
theoretically more appropriate but practically more difficult
definition is related to the moments of the response) but
will not be discussed here. The definition given above is, in
practice, easy to handle and avoids some difficulties as to
how the signal starts and how it approaches its final value.

If the amplifier has no d-c response, the final value is
zero. In such cases, one extrapolates the curved large-time
asymptote of the response to small times as a defined refer-
ence. As we are still discussing broad-band amplifiers, there
is no problem, since the step response falls approximately
linearly for intermediate times and, hence, a linear extrapo-
lation will be sufficient. The rise-time then may be defined
as the time required for a rise from 10% to 90% of the final
value, measured ‘‘parallel” to the extrapolated linear
asymptote, as sketched in Figure 74-10.

3yt
A

T

0.ag _|

From the preceding discussion, we understand that the
rise-time is related to the high-frequency behavior of the
amplifier. Actually, one finds a relation between the rise
time 7 (in seconds) and the upper cutoff frequency f, (in
Hz):

7, =030...045 (74-27)*

where the value of the product varies between the limits
indicated, depending on the construction of the amplifier.
The validity of this relation requires a small overshoot, less
than 5%.

The overshoot is the amount by which the response at
the end of the step exceeds its final or settled value—if it
exceeds it at all; a system in which an overshoot exists is
called undercritically damped; an overshoot-free system
generally is overcritically damped. The limiting case, criti-
cal damping, is also free from overshoot. The overshoot is
measured in percentage of the final value, as indicated in
Figure 74-11. The existence of an overshoot and its’amount
as well as its form depend on the high-frequency behavior
of the amplifier in the roll-off region. It may be oscillatory,
as indicated in Figure 74-11 (appearing as a damped sinus-
oid superimposed on the response) or exponential, with
one or a few “wiggles” (but a finite number of them), as in-

Fig. 74-10.— Another example of a step function response,
showing a suitable definition of rise-time when the
amplifier has no d-c response.

\j

*This is empirically found to hold generalty (when the overshoot is small)

and has been mathematically proved only for special cases. The mathemati-
cal difficulties arise from a theoretically not very appropriate but practically
easy definition of rise-time.
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Fig. 74-11. — Further examples of step function responses, defining overshoot (to the teft with d-c
response, to the right without d-c response).

dicated in Figure 74-9. A small overshoot generally leads
to a certain reduction of the rise-time without too much dis-
tortion of the response and, therefore, is desirable for some
applications (e.g., in certain control systems and for pen-
writer mechanisms).

Clearly, the rise-time is of vital importance when one
needs amplification and wants to study fast transitions in
the input signal. The amplifier can reproduce such transi-
tions only if they occur at a much slower rate than the rise-
time of the amplifier. If the input signal in the region of the
transition is similar to a step response (directly, as in Fig.
74-9, or “obliquely,” as in Fig. 74-10), i.e., remains fairly
constant in a neighborhood on both sides of the transition,
we may determine a rise-time of the input signal. One may
approximately correct for the influence of the amplifier,
evaluating the output signal by the rule of the combination
of rise-times, which will be given below. This allows for a
correction of the rate of the slope but not its form.

COMBINATION OF RISE-TIMES

As a general rule, the rise-times of n different amplifiers,
T, Ty . - . » T, connected in cascade, combine to the total

rise-time 7 of the combined amplifier as
B e E T (74-28)*

if the overshoot is less than 2%. This approximation is
better as n becomes higher. As mentioned above, the rise-
time of the input signal (if this signal is such that a rise-
time can be defined for it), combines in the same way:

T,~Vit+rp (74-29)%
if 7, and 7, are the rise-times of the input and output signals
and 7 that of the amplifier. Obviously, a rise-time correction
according to equation (74-29) can be performed only as
long as 7, is not much smaller than 7.

The rise-time is a measure of the smoothing effect on
sharp transitions, mentioned earlier, and the effect is ex-
pressed by equation (74-29). The overshoot is a measure of
ringing in the amplifier—if present—which also was dis-
cussed earlier.

THE REPRODUCTION OF A PULSE

Due to the high-frequency behavior, a square pulse at the
input will be affected by the rise-time and, possibly, by over-

*This arises from an analogy with statistics and is analogous to the cen-
tral limit theorem. Equation (74-28) holds exactly as n— =.

tConsider the signal as the output from a fictitious amplifier with rise-time
7; and a step on the input.

shoot of the amplifier; these effects will be seen at the
output. Due to the low-frequency behavior, the output
pulse will not have a horizontal “roof”” or “top” but be fall-
ing gradually, after the rise, unless the amplifier has d-c
response. These effects lead to a distortion of the pulse as
sketched in Figure 74-12 for different cases. Several de-
scriptive parameters other than rise-time and overshoot
may be defined. The delay of the pulse is defined in the first
curve in Figure 74-12. In obvious analogy, one may also
define fall-time and undershoot at the falling part of the
pulse response. The fall of the “roof”” of the pulse, the pulse
fall, is best characterized by its time constant, defined in
Figure 74-13, as given by the inital derivative of the falling
curve.

THE INFLUENCE OF THE PHASE
CHARACTERISTIC

This influence is illustrated in Figure 74-5 for a periodic
signal and can lead to a similar distortion for an aperiodic
signal. The phase-amplitude relations at high-frequency
cutoff and roll-off can be of vital importance for the exis-
tence and amount of an overshoot. Here, only one special
case will be discussed, that of the linear phase characteris-
tic. If the transfer function (amplification) has a phase,
varying linearly with frequencys, i.e.,

A(f) = |A e (74-30)
where k is a constant within the passband (although it can-
not be realized for all frequencies), the output signal for an

input signal with its spectrum well within the passband can
be written (from equations [74-13] and [74-16]):

s, = |4] f Cserm(a)rdr 7431y

or, from equation (74-13):
k
s,( = |4] si<t - 277)

i.e., the output signal is merely a time-shifted reproduction
of the input signal (except for the constant factor |4[). We
therefore see that a linear phase characteristic does not
cause a distortion but only a delay.

(74-32)

GENERAL DISCUSSION

It can be seen from the above that special care should be
taken when judging the rise and fall, the delay and the over-
*k in equation (74-30) is constant only within the passband, but if § (f) # 0

essentially only in the passband, equation (74-31) holds to a good approxima-
tion.
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Fig. 74-12.— Reproduction of a square pulse in different cases, including definition of delay.

all resultant form of aperiodic signals that have been passed
through amplifiers. These appearances may, under certain
circumstances, be largely influenced and sometimes falsi-
fied by the ampilifier itself; this can lead to an underestima-
tion of the steepness of a transition in the signal or an over-
estimation of a delay as well as a misjudgment of the form.
Furthermore, “‘wiggles”” may be caused by the amplifier and

certain details (short-time events or details of fast transi-
tions) may be erased by the smoothing effect of the non-
ideal impulse response. The proper representation of the
input is arrived at only when the amplifier has a sufficiently
high upper cutoff frequency, as related to the spectrum of
the signal, and d-c response. For quickly varying or short
signals, the d-c or low-frequency response may be of minor

Fig. 74-13. — Definition of a time constant in general and, specifically, for the pulse fall.

\\/‘same slopes at t=o

T=time constant
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importance as long as the corresponding lower cutoff fre-
quency is considerably below the main spectrum of the sig-
nal. For a highly oscillatory signal, the lack of d-c response
merely shifts the d-c level.

The phase response may also be a source of signal distor-
tion, unless the phase remains reasonably constant within
the passband. As was seen, a linearly varying phase may
also be accepted, as this does not influence the form but
only causes a measurable and consistent delay. The realiza-
tion of an approximately linear phase characteristic with-
in the passband affects the roll-offs outside —generally
far outside —the passband. This holds especially for so-
called minimum-phase transfer functions. Non-minimum-
phase transfer functions may be thought of as minimum-
phase functions combined with all-pass filters: such
all-pass filters may aid in linearization of the phase
characteristic.

Bandpass Amplifiers and Filters

Above, we discussed the properties of and requirements
for an amplifier that should reproduce the input signal as
truly as possible within practical tolerance limits. Here, we
will discuss briefly the properties of amplifiers with charac-
teristics tailored to extract certain features from the signal,
such as a part of the spectrum or a certain sinusoidal com-
ponent, or to process the signal, e.g., to obtain its derivative
or integral.

BANDPASS AMPLIFIERS

These are amplifiers used to extract a certain part of the
spectrum of available signals. If relatively broad-band in
nature, they doubtlessly have, in general, the same proper-
ties as broad-band amplifiers. The main difference is in their
use; they are not intended to let the whole spectrum
through but only a defined part of it, intentionally causing
an output signal to appear as if the input signal had been
subject to the distortion discussed earlier in this chapter.
With this intention, one usually desires as sharp a cutoff as
possible at the ends of the passband; this usually calls for a
linear phase characteristic in the passband, as a constant
characteristic is quite difficult to realize. The most impor-
tant use of such amplifiers is where the input signal has two
or more components, one of which has the main part of its
spectrum in a region where the other signals contribute
comparatively little. A bandpass amplifier, with its pass-

band in this region only, then can separate the first signal
from the others; i.e., it acts as a filter.

A special type of bandpass amplifier is the narrow-band
amplifier, discussed below, which has such a narrow band-
width and sharp cutoffs that it almost filters out a single
sinusoidal component in the available spectrum.

Other special cases are high-pass and low-pass amplifiers
and bandstop amplifiers, also discussed below.

NARROW-BAND AMPLIFIER

The narrow-band amplifier or selective amplifier is de-
signed to amplify signals only within a surrounding of a cer-
tain frequency, its center frequency. It may be used to indi-
cate the mere existence of a sinusoidal component and
should then, in principle, have as small a bandwidth as pos-
sible. It may also be used to filter out a time-varying sinus-
oidal component and then must have a bandwidth that is
sufficiently broad to reproduce the time variations truly at
its output. The latter requirement will be discussed briefly.

A sinusoidal component may have a time-varying ampli-
tude or time-varying frequency or both. In the former,
an amplitude-modulated signal, the basis for the band-
width requirement is as follows. A sinusoidal signal
cos(2af,t + ¢,), modulated with a time-varying ampli-
tude m(?),

s(t) = m(1) cosQuft + ¢,) (74-33)

has the spectrum
S =3 MU= feo + M(f+ feim]  (74-34)*

i.e., the spectrum of the modulated signal is composed of
the displacements of the spectrum M(f) of the modulating
signal m(t) to the frequencies f, and —f,, as sketched in
Figure 74-14. Normally, the spectrum of m(s) extends over
frequencies much less than f,. (Note the two-sided spec-
trum of M(f); equation [74-14] also gives a spectrum for
negative frequencies, which have no direct physical mean-
ing, so that |M(f)| is an even function, but here also the
negative frequencies in M(f) contribute to S(f) through
shifting of M(f).) Thus, it is important that the narrow-band
amplifier has sufficiently constant amplification over a fre-
quency range Af around f,, as broad as the main part of the
spectrum of the modulating signal (see Fig. 74-14). Within
this range, it should also have a linear phase characteristic.
If the signal is frequency modulated, the situation is con-

Fig. 74-14. — Spectra for an amplitude-modulated sinusoid, $(f), and its modulating signal, M(f).
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*M(z) is shifted not only in frequency but also in phase, as indicated by
the exponential factors.
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Fig. 74-15. — Characteristic of a resonant circuit.

siderably more complicated. Even in the simple case of a
sinusoidal modulating signal, the modulated signal is ex-
pressed by an infinite number of sinusoidal components,
distributed around f, and —f, and spaced apart by the fre-
quency of the modulating signal (the amplitudes of these
components are given by Bessel functions). It turns out that
for a frequency-modulated signal

s(t) = m, sin {27[f, + gl + @, (74-35)T
it generally is sufficient to have a bandwidth of
B~2g,+p (74-36)

where the “frequency deviation” g, is the maximal value of
|g(#)| and f the upper frequency limit for the important part
of the spectrum of g(t). The narrow-band amplifier stage
often is built around a resonant circuit similar to the one
sketched in Figure 74-15, with its transfer characteristic.
The amplifier then has approximately the same characteris-
tic. Note the acceptable linearity of the phase characteris-
tic. Modern circuitry also often makes use of ‘“‘active fil-
ters” realizing similar characteristics through feedback (or
one uses ceramic resonant components or rapid switching
between different circuit paths). Often different stages are
used in cascade to reduce the bandwidth—or to obtain a
more flat passband together with steeper roll-offs by center-
ing the individual stages at slightly different center frequen-
cies.

HiGH-PASS AMPLIFIER

For some purposes, it is desirable to remove low-fre-
quency components in the signal. For such purposes, one

tEquation (74-35) is the general expression for a frequency-modulated
signal, i.e., having a time-varying frequency, but can also be shown to be
equivalent to a phase-modulated signal (time-varying phase). with a proper
8.

uses a broad-band amplifier with its low-frequency cutoff
above the uninteresting frequency region and a steep roll-
off. Nature puts high-frequency cutoff as well, anyway, but
often it is desired to place this cutoff intentionally at a cer-
tain frequency. Here, the discussion of broad-band amplifi-
ers holds, for the undesired signal, especially as to opera-
tion on the low-frequency roll-off.

A special case is the differentiator, which has a linearly
sloping (rising) low-frequency characteristic (roll-off), i.e.,
an amplification proportinal to f, up to a certain frequency
where nature or intention puts a high-frequency cutoff, usu-
ally without a passband in between. It can be shown that
the output signal is the derivative of the input signal by dif-
ferentiating equation (74-13) with respect to time (left as
an easy exercise for the reader), as long as the important
part of the spectrum of the input signal falls on the linear
slope.

Low-Pass AMPLIFIER

If, instead, it is desired to leave out an undesired high-
frequency component, one uses an amplifier with a d-c re-
sponse, an upper cutoff frequency that falls below the unin-
teresting region and a steep roll-off. These amplifiers be-
have as discussed above for broad-band amplifiers with d-c
response, for the undesired signal especially, as to opera-
tion in the high-frequency roll-off region.

A special case is the integrator, which has a linearly fall-
ing roll-off slope, i.e., an amplification proportional to /[f, at
least up to a determined frequency (usually the slope is in-
creased after a certain frequency). It can be shown by inte-
grating equation (74-13) with respect to time (also left to
the reader as an easy exercise), that the output signal is the
integral of the input signal (as long as the slope does not
change over the main part of the spectrum).
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GENERAL DISCUSSION

Bandpass amplifiers with a relatively broad passband do
not differ considerably from broad-band amplifiers. The dif-
ference is mainly in their use (and that roll-offs usually are
made steeper).

The special case of narrow-band amplifiers, used for
studying single sinusoidal components, shows that the
bandwidth must be tailored to the amplitude or frequency
variations one wishes to study. Too low a bandwidth has an
effect on amplitude modulation analogous to that of a
broad-band amplifier with d-c response, but too low a band-
width, applied on the modulating signal alone. The effect of
too low a bandwidth on a frequency-varying signal is con-
siderably more complicated.

It should be mentioned that a narrow-band amplifier, of
course, also reacts to the portion of the spectrum of an
aperiodic signal, which falls in the passband and on the
nearby roll-offs. As an example, the step-function response
of the LC filter in Figure 74-15 is shown in Figure 74-16.
This could have been taken for an amplitude-modulated
sinusoid with an exponential modulation (of short duration).
Hence, it should be kept in mind that transient signals (and
noise!) can appear much like modulated sinusoids on the
output of a narrow-band amplifier and, under certain cir-
cumstances, be mistaken for such. It seems likely that this
may occur when EEG signals are interpreted (often con-
taining spikes or fast transitions), e.g., alpha waves of very
short duration may be ‘“indicated” at the filter output but
actually be caused by irregular transitions or spikes.

Finally, when using a differentiator or integrator, one
must, for obvious reasons, be sure that the important part
of the spectrum is kept on the proper linear slope of the
transfer function. This is especially important for differen-
tiators, almost abruptly changing from a rising to a falling
slope at a certain frequency; deviation in the phase charac-
teristic from the ideal, linearly sloping phase may be rela-
tively large even at a tenth of this frequency.

In general, high-pass and low-pass amplifiers can, under
certain circumstances, deliver distorted versions of the
undesired signal component (due to the presence of this
component at the roll-off), which can interfere with the de-
sired component. In any case, it is important to make sure
that the desired signal has the important part of its spec-
trum within the passband.

Fig. 74-16. — Step-function response of the circuit in Figure 74-15.
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BANDSTOP AMPLIFIERS

A bandstop (band rejection or “‘notch”) amplifier has
specifically low amplification (at or near zero) in a certain
frequency range and passbands on one or both sides of this
range, with roll-offs between. With a broad bandstop range,
this may be looked at as a broad-band amplifier with one or
two passbands. Often a narrow bandstop range is used, e.g.,
at 50 or 60 Hz to remove mains interference. This has little
influence on the amplitude spectrum of signals with broad
spectra, but may have an important influence on the phase
spectrum. The range of phase variation in the transfer func-
tion is considerably broader than the bandstop range.

Noise

Here, we will discuss noise in its stricter and more appro-
priate sense—randomly varying signals. Although interfer-
ing and undesirable signals of non-random nature some-
times are called “noise,” the proper term should be interfer-
ence.

Noise is a random fluctuation, meaning that the momen-
tary value of, for example, a noise voltage, cannot be pre-
dicted exactly but that one knows the probability that it falls
between given limits. Hence, noise is unpredictable, in con-
trast to other interfering signals, such as power line “hum,”
which are deterministic —the momentary values of which
are determined by a certain law.

THERMAL NOISE

Noise arises, in principle, in all conductive and current-
carrying media in electric circuits. Noise originating from
connecting wires is negligible, as is also usually the case for
noise in capacitors and inductors. The noise stemming from
resistors, on the other hand, is of basic importance. A noise
voltage appears across the connections of the resistor, due
to thermal fluctuations in the electron distribution within
the resistive material. This is called thermal noise.

When trying to find the spectrum of a noise, one runs into
certain mathematical difficulties due to the random nature
and constant power of the signal. With a certain modifica-
tion of the definition of the spectrum (see above), one can
define a power spectrum for the noise, analogous to |S()|?
for the spectrum S(f) of a deterministic signal s() (applied
on a deterministic signal, the power spectrum as defined for
noise is essentially the same as [S(f)|?). However, a phase
spectrum cannot be defined. For details concerning noise
power spectrum, the reader is referred to the literature.

The power spectrum of thermal noise of a resistor of R
ohms is 4 kTR (volts)? per Hz (when defined for positive
frequencies only), where k is Boltzmann’s constant
(1.38 - 10-23 Ws/°K) and T is the absolute temperature in
°K. If the rms voltage E of this noise is measured, connect-
ing a noise source and a measuring device to an amplifier
with a bandwidth of B Hz, one finds

E =2VkTRB (74-37)*
if B is so large or the roll-offs so steep that the influence of
the roll-offs can be ignored. Hence, the effective part of the
input rms thermal noise grows proportionally to the square
root of the bandwidth of the system through which the sig-
nal is processed.

Noise often is stated in terms of its “peak-to-peak” val-
ue. This is an inappropriate term, as theory shows that a

*Note the dependence on temperature. This is why sometimes certain

electronic equipment is cooled by liquefied gases where the requirements are
extreme, such as in radio-astronomy.
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true peak value for noise does not exist. In discussing
“‘peak-to-peak’ value, we mean the range within which the
momentary value falls 97.3% of the time (triple standard
deviation range). It can be shown that this is related to the
rms value as

(rms value) 2% (“‘peak-to-peak” value of the noise)

(74-38)F
Measuring ‘‘peak-to-peak’ values on an oscilloscope, one
finds approximately six times the rms value, as the prob-
ability for the signal to exceed this range is quite small and
therefore higher momentary variations are almost never
seen on the oscilloscope.
One should note that the noise over a general physical
impedance has the rms value

E =2\ kT J'“ R() df

where R(f) is the real part of the impedance. For a resis-
tance R and a capacitance C in parallel, for example, one
finds

(74-39):

kT

E= ¥el (74-40)

This seems to indicate that the capacitor is the source of
the noise (as R does not appear in the formula). This is not
true but results from the filtering action of C on the physi-
cal noise source, which is the resistor. Equation (74-39)
gives the general result of the filtering action of the circuit
itself on its resistive noise sources, as any physical imped-
ance is associated with a network of limited bandwidth. (In
equation [74-37], on the other hand, the theoretic case of a
pure resistance as the source was considered, which would
give an infinite rms value —as pure resistance is associated
with a circuit of infinite bandwidth—and therefore a sys-
tematic bandwidth had to be introduced.)

Because of the uniform power spectrum of thermal noise,
it often is called white noise (in analogy with white light).

NOISE IN SEMICONDUCTORS

In an active circuit, one also has noise contributions from
transistors and often also from semiconductor diodes. The

logarithm of
power spectrum

4

N

white noise
RN —~—

1/f—nuise

1Note that this holds for only this type of noise and is not a general rela-
tion.

{Equation (74-39) obviously is a generalization of equation (74-37) in the
case when “B” is determined by the impedance itself and not by the “‘exter-
nal” circuitry.

theory of noise in vacuum tubes and diodes will not be ex-
plained, since these rarely are used today. Generally, one
finds a noise contribution that is caused by random fluctua-
tions in the “d-c” current through the device. For a semi-
conductor diode in forward conduction operation, one finds
the rms value for the noise current:

1=\2qQI,+1,)B (74-41)

where ¢ is the electron charge (1.6 - 10-1° As), 1, the d-c
current through the diode in amperes, I the limit leakage
current in amperes in backward operation (for high back-
ward voltages not causing avalanche breakdown) and B the
bandwidth in Hz of the measuring instrument, giving / in
amperes. Again, this is a white noise. To this is added flick-
er noise with a noise spectrum proportional to lff, i.e., in-
versely proportional to frequency. Because of this form of
the spectrum, it is also often called //f noise. This noise
contribution is mainly caused by phenomena occurring on
the surface of the semiconductor material and phenomena
associated with the recombination of charge carriers
(“holes” and electrons). The spectrum for the total noise
current in a diode is sketched in Figure 74-17 for low and
medium frequencies (at higher frequencies, additional ef-
fects influence the spectrum, such as the influence of layer
and parasitic capacitances or lead inductance).

The noise in a transistor is something much more compli-
cated, and any detailed discussion falls beyond the scope of
this chapter. For low and intermediate frequencies, the
spectrum of the collector noise current has the same ap-
pearance as that of a diode (see Fig. 74-17). The character-
istic at higher frequencies will be mentioned later in con-
junction with the noise factor.

NoISE FACTOR AND SIGNAL-TO-NOISE RATIO

Amplifiers and transistors have a general specification in
terms of a noise factor. Several special types of noise fac-
tors and noise measures have been defined for different
purposes; only one concept will be mentioned here.

Suppose that the amplifier input impedance and the
source impedance are matched, meaning maximal transfer
of power from source to amplifier (as will be discussed in

Fig. 74-17.—Power spectrum of the noise current in
asemiconductor diode.

- log f
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the section on input and output characteristics) and that the
load on the amplifier at its output is in the same way
matched to its output impedance, we connect a resistor as a
noise source to the input and measure the resulting power
spectra in the load. For a real amplifier, one measures a
total power spectrum as a function of frequency, W (¢), in
the load, which is contributed to by the noise source at the
input and noise sources inside the amplifier. If the amplifier
were ideal (i.e., without any internal noise source), we
would measure a reduced power spectrum W(f) in the load.
The noise factor or noise figure then is defined as

w
F(f)= )
w(f)
characterizing the “noisiness” of the amplifier, as referred
to a ‘‘standard” resistive source, in the case of maximal
power transfer from source at the input to load at the out-
put. (More exactly, F as defined above is called the “stand-
ard operating noise figure’ to avoid confusion with other
types of noise figures, defined for special purposes.)

W (f) may be divided into two additive parts, the contri-
bu[lOI’l W(f) from the input source alone and the contribu-
tion W (f) from the internal sources in the amplifier. One
then can write

(74-42)

W)
W)

which will be used later when discussing cascaded stages.
We see that F = | for an ideal amplifier and F > 1 for a real
amplifier.

If W (f) is the power delivered to the amplifier from the
source, we may define a power ampllﬁcatlon in full analogy
with the definition of amplification given earlier, choosing
power instead of voltage as an input and output quantity. If
the power amplification is denoted G(f), we then have W(f)
=W/ G(f). As we have assumed matching lmpedances
for the highest possible transfer of power, G(f) is called
available power gain. This concept is necessary for later
discussion.

The signal-to-noise ratio (SNR or S/N) is a useful meas-
ure of the “noisiness” of a signal, defined as the quotient of
the rms value of the signal alone (the noise-free signal) and
that of the noise part of the composed signal. The signal-to-
noise ratio of an amplifier is the signal-to-noise ratio of its
output signal for a given input signal; for a bandpass ampli-
fier the ratio often is expressed in db assuming, for exam-
ple, an input signal of 1 wV rms value. The SNR of broad-

F(H=1+

(74-43)*

band amplifiers depends on the frequency range if the pass-
band covers regions with //f noise or with a non-constant
high-frequency noise characteristic. Another, frequently
used method of characterizing noise properties of an ampli-
fier is to refer its inherent noise to the input. One then
states the rms value of an input noise source that gives the
same relative noise contribution, added to the input signal,
as appears in fact at the output. This rms noise applied to
the input of the idealized amplifier —the identical but noise-
free amplifier—gives the same noise at its output as is
measured at the output of the real amplifier with no input
signal.

Noise FACTOR OF A TRANSISTOR
A typical frequency dependence of the noise factor of a
transistor is shown in Figure 74-18, where the effect of //f
noise and the behavior at high frequencies (mainly due to
reduction of the available power gain at high frequencies)
appear. Note that F is a relation between power specira,
the definition of the db unit for power relations gives the
expression for F in db stated in Figure 74-18 (compare with
the first part of this chapter, where db for voltage or current
relations is defined). Hence, a slope proportional to f or I/f
corresponds to a slope of +3 db/octave in “‘power deci-
bels” and 6 db/octave in ‘‘voltage decibels.”
An amplifier generally will have a noise characteristic of
the same type.

CHOPPER AMPLIFIER

The I/f noise exists in any normal amplifier with d-c re-
sponse. To avoid the influence of this noise, one can shift
a “d-c” signal (pure d-c or slowly varying) in frequency by
modulating an a-c signal with it (compare equations [74-33]
and [74-34]). The modulated a-c signal then is amplified in
an a-c amplifier, not contributing //f noise; the amplified
(modulating), desired signal then is extracted with a detec-
tor. The simplest way to do this is to “chop” the signal by
multiplying it with a square wave, having a frequency that
is much higher than the relevant spectral range of the de-
sired signal. This square wave varies between either +1
and —1 (periodic sign inversions of the desired signal) or
+1 and 0 (“sampling”) and the input to the a-c amplifier,
therefore, is an amplitude-modulated square wave. After
amplification, it can be detected (the desired signal is ex-
tracted) by multiplying it again with a square wave and fil-
tering to remove the remaining high-frequency a-c. Of

log F(f) Findb: 10 qplog F
Fig. 74-18.— Noise factor of a transistor as a function A
of frequency.
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course, the “chopping” must be designed so that it does not
contribute serious //f noise itself.

This technique is applied in chopper amplifiers for low-
noise d-c amplification. A parametric amplifier with d-c
response works with a somewhat related principle (using
voltage-controlled capacitors).

CASCADED AMPLIFIERS. THE IMPORTANCE
OF THE FIRST STAGE
If two amplifiers are connected in cascade, the total noise
factor, with a‘‘standard” resistive noise source at the input,
is
ooy Het GV it
w G,G,W,
where W, and W, come from the internal noise sources
and G, and G, are the available power gains of the first and
the second amplifiers, respectively. Obviously, the part
W, of the power from the first amplifier contributes by
G,W,, to the output of the second amplifier. The over-all
power gain is G,G,, as is easily realized.
Defining the individual noise factors F, and F, of the am-
plifiers according to equation (74-43), we find

(74-44)

F=F,+—(F,— 1) (74-45)
Gl

By applying this formula in sequence on a cascade of n am-
plifiers, one finds
Fot Fotl, o, Fal (74-46)
GG, '~ GG,...G )

n—1

2
G

The available power gain for each amplifier generally is
greater than unity. We see, therefore, that to keep F as
small as possible, it is important to have (1) the lowest pos-
sible noise factor in the first stage and (2) the highest possi-
ble gain in the first stage. Obviously, the first stage gener-
ally determines the noise properties of the whole cascade.
Hence, efforts to provide a low-noise amplifier should con-
centrate on this stage.

F=F, +

1

DETECTION OF NOISY SIGNALS
Amplitude detection of a periodic signal generally is per-
formed with a diode circuit (see Chapter 71). As a diode
characteristic is not exactly piecewise linear but rounded
off around zero, the detection of small signals with noise
can result in a reduction of the signal-to-noise ratio. If the
diode characteristic is approximated by a parabola in its
curved region, one can show that for signals detected in this
region the signal-to-noise ratios behave as:

(%)= (), ()1
N out N in’ N ’
S S\ .. /S
- —| i<
<N)outcc (N)in lf (N)
Hence, a bad signal-to-noise ratio becomes even worse aft-
er the detection. It is, therefore, important that such sig-
nals have sufficient amplification before detection, so that

the detection can be made on a sufficiently linear part of the
diode characteristic.

(74-47)

BANDWIDTH AND SIGNAL-TO-NOISE RATIO

We have seen that the spectrum of the noise, contributed
by the amplifier, is constant within a broad region and rises
at low frequencies. When amplifying small signals, it is
therefore important that the amplifier does not have too

large a bandwidth, as the parts of the passband outside the
range of the important part of the signal spectrum contrib-
ute to noise but not to the signal. Generally, the filtering
effect of the amplifier on its own noise is quite similar to
that on the input signal, as it is the first stage that deter-
mines the noise characteristic and the later stages often
determine the bandwidth. If an important band-limiting
occurs at the input to the first stage (as often is the case for
high-input impedance amplifiers), this band-limiting should
be repeated in a later stage to act on the noise of the first
stage as well as on the signal.

Assuming, for simplicity, purely white noise, the rms
noise voltage on the output is proportional to VB, where B
is the bandwidth, but the signal rms voltage remains con-
stant when B increases over a certain value; before this
value is reached, it also increases. Therefore, an optimal
bandwidth can be found, giving the highest signal-to-noise
ratio. For noisy signals, it can be important to make the
bandwidth optimal. This generally is near the width of the
important part of the signal spectrum, but if it falls off slow-
ly, the optimal signal-to-noise ratio may require a certain
distortion of the signal spectrum. In such cases, the proper
reproduction of the input signal at the output also must be
included as a proper factor in the optimization.

DRIFT IN D-C AMPLIFIERS

Drift in d-c amplifiers often can be considered as a spe-
cial case of !/f noise. Drift has been found to follow the l/f
law down to corresponding frequencies in the *“drift spec-
trum” as low as 6 - 10~3 Hz, corresponding to a period of 5
hours, and one might expect this to hold for considerably
longer drift periods. The use of “‘d-c” feedback to stabilize
against drift can, in this context, be looked on as providing
a cutoff at very low frequencies.

NARROW-BAND AMPLIFIERS

Of the continuous noise spectrum, spread over all fre-
quencies, a narrow-band amplifier filters out a narrow por-
tion, corresponding to its passband. This may appear as an
amplitude and frequency-modulated sinusoid at the output
(see equation [74-39]). When studying, for example, the «
component of the EEG by filtering, one has a contribution
from the EEQG itself (with its noisy appearance) even if an a
wave is not present. If amplitude and frequency (within the
passband) both seem to vary statistically with time within
shorter time periods, one might suspect that one observes
filtered “EEG noise” rather than an « wave. The best test
probably is to use several filters at different center frequen-
cies in parallel, i.e., to observe other EEG waves simulta-
neously even if one is interested only in the a wave. If all
filters have similar signals (except for different center fre-
quencies) at their outputs, one can expect that this is con-
tributed to by the noisy appearance of the EEG alone and
does not correspond to sinusoidal components in the EEG.
Only when one or two filters have a markedly different out-
put signal, as compared to the others, can one expect the
EEG to have a corresponding sinusoidal component. This
holds also for the influence of spikes and fast transition in
the EEG, mentioned earlier. It seems especially useful if
one would have a “test filter” centered on a frequency
where rarely sinusoidal components appear in the EEG, in
order to compare its output with other filter outputs.

AVERAGING

Aperiodic signals can be extracted out of noise through
averaging, if they are repeated many times. To do this, one,
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in principle, adds all the aperiodic signals. As the mean val-
ue of the noise is zero, this means that the noise contribu-
tion tends to average out, whereas the repeated aperiodic
signal is built up proportional to the number of repetitions.
If n repetitions of the signal are added, the sum signal has a
signal-to-noise ratio improved by a factor of V.

OTHER NOISE SOURCES

A special type of transistor noise, which has become ac-
tual with the development of integrated circuits, is the burst
noise. This appears almost as a square wave with statisti-
cally varying frequency, i.e., the noise voltage (or current)
switches almost between two levels.

A noise contribution from a resistor, which often is for-
gotten, is its current noise. In addition to the thermal noise,
mentioned above, a current noise appears when a d-c cur-
rent flows through the resistor, which is due to statistical
fluctuations in the current distribution in the resistor. This
noise is of the //f type and the appearing noise voltage has a
rms value proportional to the d-c current. It is, furthermore,
strongly dependent on the type of resistor used; generally,
metal film resistors are the best. Hence, a low-noise ampli-
fier should employ high-quality resistors (for these the
manufacturer usually specifies the current noise, generally
in #V/V, meaning uV rms noise per volt d-c over the resis-
tor, measured over a specified frequency range) in its first
stage and also run low d-c currents through them.

Stability

This part presents a brief discussion of the stability of an
amplifier in the sense that it should not generate a signal of
its own; the output of an amplifier should be determined
only by the input signal (except for the noise inherent in the
amplifier). Under certain circumstances, an amplifier may
fall into self-oscillation, generating a periodic waveform
that is, in principle, independent of the input signal, al-
though it may become modulated by an input signal or
merely added to it. A special case is amplifier drift into a
“bottoming” or “cutoff”” state, in which the amplifier quickly
reaches a constant d-c level at the output. This level is at
one end of the output voltage range end-values, where the
amplifier becomes blocked. This may be looked on as the
extreme case of self-oscillation, “d-c oscillation.”

OSCILLATORS

An amplifier that is unstable in the above sense has be-
come an oscillator. To elucidate this, the criteria for oscilla-
tion will be discussed. An oscillator is basically an amplifier
with feedback as shown in Figure 74-19. General aspects
of feedback will be discussed later. Here, we will state the
criteria for self-oscillation in a feedback system. Let A(f) be
the transfer function of the amplifier and B(f) the transfer
function of a (generally passive) filter in the feedback path.
If we open up the loop at the input to the amplifier, as shown
in Figure 74-20, we find a voltage ¢ appearing at the output

Fig. 74-19.— An amplifier with feedback.
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Fig. 74-20.— The feedback loop of Figure 74-19 opened up.
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of the feedback filter in response to a sinusoidal input volt-
age, e, , on the amplifier:
e = A(f) B{f) e, (74-48)*

Here_, we presuppose that the effect of the loading of the
9mp11ﬁer input impedance on the feedback filter is included
in B(f). If e and e;, are equal, that is,

AN B(f) =1 (74-49)

we can remove the input source and connect the output
from the feedback filter to the input without changing the
state of the system. Then the voltage e;, will persist at the
input of the amplifier after the loop is closed, sustained by
the feedback. This means that the circuit oscillates at a fre-
quency (or frequencies) satisfying equation (74-49). This
equation, in fact, is the basic oscillation criterion. It actually
is a pair of equations, since 4 and B are complex:

Re(AB) =1 AB| =1
T
Im(AB) =0 /AB = 2prr

where n is an arbitrary integer. The latter part of equation
(74-50) is more useful for theoretic discussion, although
both are equivalent. The case |[4B| = 1 actually is a special
case in which the assumed sinusoidal input voltage would
remain unchanged after closing the loop. Equation (74-50)
is the criterion for purely sinusoidal oscillation (Bark-
hausen’s oscillation criterion). If |4B}>1 when e;, and
e are in phase, it is easy to imagine that voltages will be
built up in the amplifier after closing the loop, because
e > ¢;,. This will continue until the voltages are limited by
some non-linearity in the system. If |4B|>> I, the limits are
likely to be set by bottoming and cutoff of the amplifier and
the oscillation then will produce a more or less square
wave. The non-linear effects then will cause the frequency
to deviate from the solution to /AB = 2nm, which will
merely be the initial value of the frequency as the oscilla-
tion is built up. If |4B] is only slightly larger than I, the
limits will be set by small non-linearities in the input-output
characteristic, before bottoming or cutoff is reached. This
will make the curve turn on the levels where |AB] is re-
duced to exactly 1 and the oscillation is approximately si-
nusoidal. The frequency then will be given approximately by
equation (74-50). We now realize that the general criterion
for oscillation is

|AB| = 1 when /4B = 2nm (74-51)%

Obviously, any small disturbance occurring in a closed loop
with |4B| > 1, when /4B = 2na, not originally oscillating,

in?

(74-50)F

*A(f) and B(f) are two amplifiers in cascade, in this case.

tRe =real part, Im =imaginary part. These are mathematical terms,
labeling the components of a complex quantity. The imaginary part is the
one having j = V=1 as a factor, given its name in earlier days when the con-
cept of the j was a little difficult to visualize. In physical applications, complex
notations generally result from (1,1} mappings from the “real world” and
therefore the imaginary part is, physically, no less “real” than the real part.

il.e., over-all loop amplification greater than or equal to unity when its
corresponding input and output signals are in phase.
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will cause the build-up of an oscillation. Such a disturbance
may be the noise inherent in the circuitry. Hence, we put as
stability criterion:

Stability = |4B| < 1 when ZAB = 2nm  (74-52)

STABILITY

If a feedback system is to be used as an amplifier, it must
fulfill the criterion (equation [74-52]), or else it will function
as an oscillator. Actually, this holds for any amplifier even
if no intentional feedback circuits are built in; certain feed-
back paths always exist through parasitic capacitances and
through mutual inductance between coupling wires. In the
capacitive case, one must aim at reducing such feedback
paths as much as possible by keeping input and output cir-
cuitry well apart or separated by a grounded shield. In the
case of inductive feedback, one must see that wires carry-
ing input and output current do not run too closely or in
parallel with each other. Especially, they must not inter-
weave as sketched in Figure 74-21, since this generally
results in a serious transformer action. In the case of inten-
tional feedback, one must control the loop gain characteris-
tic, i.e., the characteristic of AB, such that Z4B does not
reach 0 or 360° as long as |4B| = 1. As the values of com-
ponents can never be exactly specified, one must have a
certain phase margin a>0: the value of /AB must not
come closer than « to 0 or +360° as long as [AB| = 1.

An amplifier having a high-frequency roll-off of —6 db/
octave up to frequencies where |4| < 1 usually does not
cause much trouble with feedback. Many integrated opera-
tional amplifiers, however, begin to roll off with —12 db/
octave or more before |4| < 1. This usually calls for spe-
cial measures to keep the circuit stable if feedback is used.
Several possibilities exist; careful design of the feedback
path is the most obvious; adjustments of the phase charac-
teristics of the amplifier itself, e.g., by using so-called “lead”
and “lag” compensations also are useful means. The meas-
ure required must be chosen in each case, depending on
amplitude and phase characteristic of the amplifier. Op amp
manufacturers often give suggestions in their “Applica-
tion Notes.”

GROUND Loops
A special problem is posed by the formation of ground
loops. Return currents in a ground shield or chassis plate
may induce currents in other structures by transformer ac-
- tion and, furthermore, ground connections may interweave,
like the input and output wires in Figure 74-21. Such inter-
weaving must be avoided through careful layout of ground
and other connections.
A grounded shield, chassis or plate, never has zero resis-
tance. Signal currents in *‘grounds” may build up sufficient-
ly high voltages over the resistances of the metal to provide

<% transformer action

source

993

feedback

amplifier

ground chassis

Fig. 74-22.—The resistivity of the chassis metal can give undesired
feedback paths.

a feedback path, as sketched in Figure 74-22. Such a feed-
back often is sufficient to cause self-oscillation at a high
frequency.

To avoid trouble with grounds, a general rule is to sepa-
rate signal ground and power ground (used for the supply of
power to active components). There should be only one
grounding point for each of these two types, joined together
using a heavy wire. That is, all signal ground should be
made at one and the same point on the chassis (at least
within one stage) and the same goes for the power ground
(note that signal current can be superimposed on power
current!). Obviously, the use of several ground points can
cause interweaving current paths in the chassis, even if the
wires do not interweave.

BoTTOMING AND CUTOFF

A d-c feedback may cause bottoming or cutoff if the *“‘os-
cillation” criterion (equation [74-51]) is fulfilled at zero fre-
quency. A d-c voltage is thus established at the output, at a
level at which the amplifier ceases to work as such, as ac-
tive components become saturated or blocked. This must
be considered when designing d-c feedback paths.

A special problem here is the possibility of thermal feed-
back. Power dissipation in a transistor causes heating,
which lowers the base-emitter voltage (negative tempera-
ture coefficient) and increases leakage currents. This may
cause an increase in power dissipation, causing further
changes in transistor parameters, until the transistor satu-
rates or is burned out. This is called “thermal runaway”
and is a feedback phenomenon in which electrical and ther-
mal effects are coupled together in a loop. Very-low-fre-
quency oscillations are possible in such a case, e.g., if near-
by components are thermally coupled, but generally it re-
sults in a d-c drift to bottoming or cutoff. Thermal runaway
is prevented by sufficient cooling of the device (“thermal
grounding”), by choosing appropriate working points of the
transistors and by providing counteracting (stabilizing) d-c

out Fig. 74-21.—Interweaving wires give transformer action that
can result in an undesired feedback path.

] load
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feedback. A thermal-to-electric stabilizing feedback may be
realized using a thermistor in thermal contact with the tran-
sistor case.

Reliability and Systematic Errors

In the preceding part we discussed stability in the sense
that an amplifier can be kept from falling into self-oscilla-
tion. Here, “stability” in a different sense will be dis-
cussed — “long-term stability” or reliability, related to possi-
bilities of deterioration of performance through aging. Be-
fore getting to this, we will discuss how the performance of
a circuit can be affected by deviations from nominal values
of component parameters, and how the sensitivity to param-
eter variations can be reduced through feedback.

PAssivE COMPONENTS —STANDARD VALUES
AND TOLERANCES

Two factors generally causing deviations of component
values in the realized circuit, from those theoretically cal-
culated, are that components are commercially available
only with certain nominal standard values and that, further-
more, the actual values differ from the nominal ones within
specified tolerance ranges. Common tolerances for resistors
and capacitors will be given below; of course, closer toler-
ances are available at higher prices, and economy calls for
design of a circuit that is sufficiently insensitive to varia-
tions in component values, so that components with wider
tolerance ranges can be used. A circuit should tolerate the
variations in component values from a theoretic to a near-
est standard value, so that single standard-valued compo-
nents can be used.

Standard values of resistors in the so-called “R12-se-
ries,” having 12 values per decade, are, in principle, deter-
mined by

R=108"* (74-53)
where n and k& are integers; 0 < n < 11, k is any integer and
1072 is approximated to one decimal place only. In prac-
tice, a few values are shifted from the theoretic value by
one unit in the decimal place for better interlace of toler-
ance ranges in different series, such as the ‘‘R24-series”
and *“Ré6-series” having 24 and 6 values per decade, respec-
tively. The most common series is the above-defined “R12-
series” with the following 10712 values:

1.0 2.2 4.7%
1.2 2.7% 5.6
1.5 3.3% 6.8
1.8 3.9 8.2*

where the values marked by * are slightly shifted, as men-
tioned above. This series generally has a tolerance of 10%,
whereas the ‘“R24-series” generally has S% tolerance and
the *“R6-series” has 20% tolerance. Other than standard
values are made, however, especially for precision resistors
with a tolerance of 1% and better.

Modern capacitors, too, usually are made according to
the same standard rules as those for resistors, generally as a
““12-series” (equation [74-53]). But here the flora of non-
standard values is rich, especially for electrolytic capaci-
tors. Common tolerances are 20%, 10% and 5% for normal
capacitors and up to 50% or 100% or even more for some
types of electrolytic capacitors.

TEMPERATURE EFFECTS

Resistors and capacitors change their values with tem-
perature, generally in a fairly linear fashion. Electrolytic
capacitors, however, can have a pronounced non-linear
temperature characteristic. Temperature coefficients or

characteristics usually are given by the manufacturers. Re-
sistors and normal capacitors may generally change within
1% and 10% for a temperature change of 100° C, with posi-
tive or negative temperature coefficients, depending on the
value, material and construction. Electrolytic capacitors
may change much more, as may cheap non-electrolytic
capacitors.

Precision components are available with a much lower
temperature coefficient, even with a differential coefficient
of zero value at a suitable working temperature.

AGING, FAILURE RATE
Component values generally change with time, although,
on the average, at a very slow rate. Individual components
may, however, change quite rapidly; whether they do or not
is a question of probability. We define a failure as the event
when the value of a component has deviated from its nomi-
nal value more than is tolerated, in view of the performance
of the circuit employing it. This meaning of failure then de-
pends on the application. For practical reasons, one gener-
ally gives data for a change exceeding a certain fixed per-
centage of the nominal value. If the probabilty that a com-
ponent, put into operation at time zero, will not fail before
time 7 is R(¢), the probability that it will fail in the time in-
terval from ¢ to (¢ + A¢) is, for small At:

p(HAt = At % [1=R(®M]=—-R' (DAt (74-54)*

where p(1) is the failure density function. The rule for com-
bination of conditional probabilities states that this can also
be written as the product of the probability R(z), that com-
ponent does not fail up to time f, with the probability
[g(H)Af], that it fails in the interval from ¢ to (¢ + Af) under
the (conditional) assumption that it did not fail up to time z:

p(OAL = R() q(r) At (74-55)t

The quantity ¢(f) is not a failure density function in the
usual sense but a conditional failure density function called
the failure rate. A typical course of g(¢) is sketched in Fig-
ure 74-23. This function may be thought of as the quotient
between the number of components failing within a time
interval of unit length and the number of components not
failing until that interval begins, having started with a large
number of components.

As sketched in Figure 74-23, the failure rate generally
has a broad region at a constant level, which we denote
with g,. Then, in this region:

- _R@w

%~ "R
from equations (74-54) and (74-55). Integrating equation
(74-56) gives

(74-56)

R(1) = R e~%tt-t) (74-57)

where R is the probability that the component lasts until
the time ,, where the constant level begins. ¢, is a small
number, much less than unity, and if we have a combina-
tion of n components in a circuit, each component having
the same ¢(f), the failure rate q,(t) for the combined circuit
can be found as follows. The conditional probability that a
single component does not fail in an interval of length Ar,
between 7, and ¢, (see Fig. 74-23), is (1 — g,Ar). The condi-
tional probability that none of the n components fails is the

*At, “delta ¢,” symbolizes a small deviation from ¢; the probability distri-
bution function for failure is {1 — R()] and the corresponding probability
density function is p(r). Equation (74-54) actually is the definition of their
interrelation.

TProbability, that it lasts until 7, times probability that it then fails within

time Ar.
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Fig. 74-23. —Sketch of failure rate as a function
of time.
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n:th power of this. The conditional probability that at least
one component fails then is

G, = 1 — (1 — g, A" = ng At (74-58)*

as g, is small, which is also assumed for Ar. Hence, the
probability R, that the circuit lasts until time ¢, between ¢,
and 1, is

R,() = R, e "%lt-11) (74-59)

from equation (74-57). We see that R () not only falls ex-
ponentially with time but also with the number of compo-
nents.

Generally, g(1) is different for the different components in
the circuit, but, in general, it still holds that the risk that the
circuit fails before a certain time grows not only with time
but also with the number of components. In any case, the
components with the highest failure rate have the largest
influence on this risk — “‘the weakest link in a chain.”

Because g(?) falls off at the beginning, before time ¢, in
Figure 74-22, components for precision applications some-
times are pre-aged so that they will have passed their time
t, and reach the lowest ¢ level without failure before being
put into the circuit. g(z) is also largely influenced by such
operating conditions as temperature, humidity, mechanical
stress, etc.

SEMICONDUCTOR COMPONENTS

Transistors and diodes have aging properties similar to
those of passive components. Often the //f noise of a tran-
sistor increases sharply before the transistor fails with re-
spect to its operating parameters.

The spread of some parameter values of semiconductors
usually is several magnitudes larger than for passive com-
ponents. The base-to-collector current gain 8 of a standard
transistor may have a relation between maximal and mini-
mal values of 2 to 5. The leakage currents may differ even
more —for both transistors and diodes. The base-to-emitter
voltage, although generally showing less spread, may have
a maximal value twice the minimal; this is also the case for
the forward voltage drop of a diode at a given current.

Variation of parameters with temperature can also be
substantial. Leakage currents follow an exponential temper-
ature law, doubling the value for approximately every 12°C
increase in temperature. The base-to-emitter voltage is re-
duced by roughly 2 mV/°C temperature rise and 8 may in-
crease by the order of 0.5% per °C rise.

It is therefore of special importance to design circuits
that can accept large variations in active-component param-
eters. They should never be designed according to meas-
ured parameters of individual transistors, nor should they

“If || << [, onehas (1 + €)" = 1 + ne.

>t

have trimmer potentiometers to adjust for deviations in
parameter values when transistors must be exchanged later.
In rare cases and for special purposes, such designs none-
theless can be accepted; it often may be necessary, for
example, to put in a trimmer for adjustment of the offset of
a d-c amplifier.

REDUCTION OF SENSITIVITY TO CHANGES

IN COMPONENT PARAMETERS

A certain insensitivity can be achieved by choosing a suitable

d-c operating point for each transistor. A more general

method, however, is the use of feedback, as discussed in
the following general terms.

Feedback was touched on in the discussion on stability,
but not as to its effect on input and output signals. Here, we
will see the effect of a feedback loop so arranged that the
output of the feedback filter adds to the input signal, as is
sketched in Figure 74-24. The stability criterion for this
arrangement is independent of e;; thus, when considering
stability, we may put e, = 0 and make sure that the criteria
previously given are fulfilled.

The equations describing the circuit in Figure 74-24 are,
for sinusoidal signals,

e, = Be, (74-60)
{eﬂ =Ale;+e) (74-61)
Solving for ¢,, we find
- 4 }
“=eT p (74-62)

where stability requires |[AB| < 1 when /4B = 2na, Since
generally |AB| > 1 within the passband of 4, one requires
/AB 3 2n7 in that region, or, equivalently, cos /AB < 1,
The extreme case of this condition is cos B = —1,
meaning that AB is real and negative. This offers the great-
est safety against self-oscillation and therefore generally is
sought within the passband. This is called negative feed-
back and is employed to counteract changes in the amplifier
(positive feedback, where AB is real and positive, generally
gives an oscillator, except when AB < 1, enhancing changes
in the amplifier). The terms “negative” and “‘positive” feed-
back may be generalized to the cases cos Z4B <0 and cos
/AB >, respectively.

The most critical components are the transistors in “A”
(“B” generally is a passive network), with their wide spread
in characteristics and their temperature dependence. There-
fore, the value of 4 may vary considerably with tempera-
ture and time or if a new transistor is used to replace an
original, faulty one. If, however, || is made very large in its
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input voltage

\adder

L g "

output voltage

Fig. 74-24. — General case of an amplifier with feedback.

passband, so that also |4B|>> 1, we get from equation (74-
62):
~ G 4

e, B (74-63)
or an over-all amplification of —1/B, independent of A.
Thus, the circuit is, through feedback, made largely insensi-
tive to alterations in transistor parameters. Equation (74-
63) clearly requires B < 1 in the passband, from which we
conclude that a passive circuit generally is sufficient as a
feedback filter.

The condition for reduction of sensitivity to variations in
A, according to equation (74-63), is that |[4B>> 1. If only
signal feedback is employed, 4 occasionally may change so
much that this condition is not fulfilled, due, for example, to
shifts in the d-c operating points of the transistors. To
counteract this, the feedback must also be active at d-c. For
practical reasons, this usually calls for separate signal and
d-c¢ feedback paths. In most cases, each individual transis-
tor stage has its own d-c¢ feedback, which may simply be
realized by a resistor, in the emitter connection shown be-
low in an example. Further d-c feedback paths over several
stages may be employed as well, together with one or more
signal feedback paths, over the whole amplifier or parts of
it. As is discussed in Chapter 72, the signal feedback may
also be used to tailor the over-all characteristics of the am-
plifier in a way largely independent of 4. Also, input and
output characteristics may be altered through feedback, as
well as non-linearities in the amplifier, which will be dis-
cussed later.

As an example of very simple d-c feedback in a single
transistor stage, we will use an emitter-resistor circuit such
as is shown in Figure 74-25. Since circuit analysis is not the
subject of this chapter, an oversimplified model of the tran-
sistor will be used, neglecting leakage currents, base-emit-

Fig. 74-25.—Use of an emitter resistor (Re) for stabilization of the
collector d-c current (/) against variations in the current amplification of
the transistor.

+E

output

input

ter voltage and input and output resistances of the transis-
tor. We will only show how the influence of B3, the base-to-
collector amplification, is reduced through the use of R,.
For d-c levels, the input is the base d-c drive E, and the
output is the collector d-c current / ; they are related as

1,=gI, (74-64)
Without R, (emitter directly grounded), we would have
I, = Ey (74-65)
Rb
and
BE
I.= 7: (74-66)

varying proportionally with 8. I, is determined by the volt-
age developed over R,, which, in equations (74-64)—(74-
66), is E,. When R, is introduced, this voltage becomes
E, — R_1,, where [ is the d-c emitter current, I, = (1 + B)/,.
Generally, 3> 1 and we can put /, = I, The reduction of
the voltage at R, byan amount proportional to the output /.
means negative feedback, with R, as the “‘adder” in Figure
74-24. We then have

and, from equation (74-62):
R
1, = E,,———B IR,
1+ 8RR,

as is also verified by direct calculation in Figure 74-25. If
BR.> R,, we get

(74-67)

(74-68)
e

independently of 8. The employment of an emitter resistor
is an important “trick’ to tolerate the wide spread in 8 and
other transistor parameters. The emitter resistor, however,
means a reduction of signal amplification, which generally
is overcome by bypassing the signal current in a large ca-
pacitor in parallel with R,. This introduces a low-frequency
roll-off and hence cannot be used in amplifiers with d-c re-
sponse. In such amplifiers, either the reduction of amplifi-
cation in the single stage is accepted or other means of
feedback for working-point stabilization can be used (any
d-c feedback in a d-c amplifier acts on the signal as well; it
then is generally advisable to use a feedback over as many
stages as possible rather than in each single stage, so that
“d-c”” and “signal” feedback cooperate).

REDUNDANT AMPLIFIERS

With high or excessive “forward” amplification and sub-
sequent reduction of the over-all gain to a desired level
through feedback, the sensitivity of the amplifier to certain
component parameters is seen to be reduced; hence, the
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failure rate of the amplifier is reduced. Another way to re-
duce failure rate is to use a redundant combination of am-
plifiers, employing several in parallel, so that the still-func-
tioning ones can “do the job” if one fails. This may be an
expensive way to reduce failure rate, although it is quite
effective and sometimes used where high precision and long
lifetime are required or failure would be catastrophic. Still
another way to provide this insurance is to employ a sec-
ond, “idling” amplifier. Normally, it is not operating but is
switched in as a replacement whenever the normally oper-
ating amplifier fails. This “replacement” is automatically
controlled by a means for the detection of an excessive
change in some important characteristic.

STABILITY

In the discussion on stability it was mentioned that a cer-
tain ‘“‘phase margin” is required in practice. This now
should stand out clearer in view of tolerances. If no “phase
margin” is allowed for, a change of a component parameter
may shift the phase characteristic so that the stability crite-
rion no longer is fulfilled and the amplifier starts to oscil-
late.

SYSTEMATIC ERROR

A change in some amplifier characteristic due to aging,
temperature effects or the exchange of a damaged compo-
nent, as discussed above, clearly can lead to a systematic
error (an error that is stable, measurable and generally can
be compensated for) in a measurement.

Another important source of systematic errors in a d-c
amplifier is the offset voltage. Generally, the output voltage
e, for a d-c amplifier can be written as a function of input
voltage e, as

e, =Ale; + Eq) (74-69)

where E is a d-c voltage arising from d-c shifts and levels
within the amplifier. E; is largely dependent on component
parameters and usually changes with temperature, aging,
etc. To keep a proportionality between ¢, and ¢;, it is neces-
sary to make E,; zero. In some cases, this may be done
through feedback, e.g., common-mode feedback in a dif-
ferential amplifier (see below). Often an adjustable shift of a
d-c level within the amplifier is introduced, so that E . can
be adjusted to zero (temperature compensation also may be
employed so that the adjustment need not be repeated after
a change in temperature). Another possibility is to use a
chopper amplifier (see discussion on noise), in which a cor-
responding a-c signal is amplified independently of E .

Another systematic error can be that introduced by vari-
ations in the power supply voltage. Such variations may
alter operating points and, therefore, amplifier characteris-
tics, as well as the d-c offset. D-c feedback and closely reg-
ulated supply voltages, which must be independent of cur-
rent drain, are means to counteract this. Another problem
may be power line hum, introduced into the circuit via the
power supply. This hum may add to the signal in the ampli-
fier or, which is worse, modulate the signal through varia-
tions of transistor operating points at the mains frequency.
The appropriate therapy generally is better filtering in the
power supply and in the d-c power paths within the amplifi-
er. In critical cases, one may increase the power line fre-
quency (e.g., to 400 Hz) to make filtering easier, or one
may use separate supply-voltage stabilizers for each ampli-
fier, or each group of amplifiers, fed from a common presta-
bilized supply.

For a differential amplifier, which in the ideal case gives
off a voltage proportional to the difference (¢, — ¢,) between

its two input voltages, e, and e,, another systematic error
arises. The real differential amplifier also still has a certain
contribution at the output from the sum (e, + e,) of the input
voltages. This contribution should be as low as possible. A
measure of quality of the amplifier in this respect is the
common-mode rejection ratio, CMRR, defined as the quo-
tient between the amplifications (voltage gains) of the dif-
ference signal (¢, — e,) and the mean-value signal (e, + ¢,)/2
(called the common-mode signal), respectively. A differ-
ential amplifier should be symmetric in its first stages
(see Chapter 71). Deviations from symmetry allow part of
the common-mode signal to pass. To make the CMRR
high, one should use matched (selected, nearly identical)
transistors to increase operational symmetry. A feedback
loop, acting only on the common-mode signal, brings fur-
ther improvement. A high common-mode signal and a small
difference-signal applied together at the inputs of a dif-
ferential amplifier with insufficient CMRR can result in an
output signal that deviates considerably from the input dif-
ference signal. In such cases, the difference signal may be
greatly misjudged.

Deviations from nominal values in amplifier characteris-
tics, caused by aging, abnormal temperature, etc., can result
in similar or other types of mesurement errors.

Non-Linear Effects

The over-all performance characteristic of a d-c amplifier
at low frequencies generally is linear only within a certain
range of output and corresponding input voltages. A typical
characteristic is sketched in Figure 74-26. The characteris-
tic generally approaches constant levels for high |e;,| (in
some cases it may, for example, turn and become reversed).
One extreme level is called saturation, the other cutoff. In
saturation, a transistor acts as a short circuit; when cutoff,
it is non-conducting. At the limiting levels of an amplifier,
the states usually are different for the different transistors in
the total amplifier. The terms “saturation” and “cutoff”
may then, as used for describing the characteristic of the
amplifier taken as a whole, in effect refer to the state of the
output transistor or output “‘stage.”

Fig. 74-26. —Typical amplifier input-output characteristic (at low fre-
quencies).

Eout

)

“saturation”

P
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“cutoff”
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The characteristic usually is smooth and therefore can be
described by a McLaurin series (power series) in terms of
()ll):

eou = A e + Ayein? + Ager® + A et + . L (74-70)*

at low frequencies, where the coefficients are constant and
the d-c offset, which adds a constant term, is neglected.
High-frequency behavior in the presence of non-linearities
will be discussed briefly later.

If the input signal is sinusoidal, e;, = E sin 27ft, the se-
ries (equation [74-70]) gives

eou = A E sin 2mft + %AEEﬂ(I — cos 4nft)

+5 A3 sin 2aft — sin 67f)

+%A4E4(3 — 4 cos 4aft + cos 8af) +. . . (74-7TDt
i.e., a single sinusoid gives rise to harmonics at the output;
their sum actually is the Fourier series for the distorted
sinusoid appearing at the output. This may cause consider-
able disturbance, as the harmonics of the lower spectral
components in the input signal add to higher spectral com-
ponents. Therefore, it may not be possible to distinguish cer-
tain original components from the harmonics generated in
the amplifier when looking at the output. Even worse may
be that signal components at different frequencies mix to
form components at sums and differences between integer
multiples of the individual frequencies. If the spectrum of
the input signal has one single peak, harmonics of this peak
result in the appearance of a series of peaks at integer mul-
tiples of the basic frequency in the spectrum of the output
signal —-when there is too much non-linearity within the
actual range of the output signal. In spectral studies, one
therefore must keep in mind that such “secondary” peaks
may be artifacts. The suspicion arises whenever peaks ap-
pear at integer multiples of the basic frequency.

The coefficients in equation (74-70) usually are falling in
magnitude, A4, > A4, >. . . Linearity, therefore, is greatly
improved if we can get rid of the second-power term, es-
pecially as this term is an even function of e;,, whereas the
linear term and the third-power term both are odd functions
of e;,,. The A, term actually can be removed by using a suit-
able operating point. Due to the general appearance of the
input-output characteristic, it must have at least one point
of inflection between the asymptotic levels. If the charac-
teristic is so shifted (by suitable d-c shifts within the ampli-
fier) that a point of inflection falls at the origin of the ey, &in

coordinate system, the second-power term by definition is
zero:

Cout = Ao, + Ao+ A et + . (74-72)

Thereby, also the second harmonic in equation (74-71) is
reduced to the generally much lower contribution from the
A, term and following even-order terms. Further improve-
ments can be achieved through feedback and by tailoring
the output range so that its asymptotic levels lie far off from
the desired range of output signals. The former method will
be discussed below.

REDUCTION OF NON-LINEARITY

THROUGH FEEDBACK

An amplifier with a non-linearity can be represented by

two ideal amplifiers with a source of harmonics connected

in between, at the site of the non-linearity; this is sketched

in Figure 74-27. In this figure, a feedback path also is intro-

duced. As was seen in the discussion on reliability, the con-

tribution of a sinusoidal voltage e, to €y is:
AA,

Cout1 = einﬁm (74-73)*

whereas the contribution of each sinusoidal component

en,i=12 .., of e, in Figure 74-27 is
AZ

e s = ChiT T 4 A4 D

out 2i hi'y _AIAZB

as here the gain in the feedback path is 4,B. The relation be-
tween the two contributions is

€out 2i _ €hi

€out1 Alein
which should be as low as possible. Now, if 4,4, is made
high, the desired over-all amplification is determined by B:

€in

enut 1 == E
(see above) and we therefore can reduce this influence of
the non-linearity by making A4, as large as possible (see equa-
tion [74-75]) and return the over-all amplification to the
desired value with B.

(74-74)t

(74-75)

(74-76)

MEASURE OF NON-LINEARITY

As a measure of the non-linearity of an amplifier, one uses
the harmonic distortion factor, defined as:

VEZ+EZ+EZ+. .. E?
= : =V1 -2 (7477
VEZ+E?+E2+. .. 2E,

Fig. 74-27. — Use of feedback for linearization.

B

ey (=) harmonics

*A large class of mathematical functions can be expressed as a (generally)
infinite sum of powers of the independent variable. More generally, a con-
stant term should be included, here assumed to be zero.

tDevelop the powers of sin 2 nft.

*An amplifier 4,4, with a feedback B.

+An amplifier 4, with a feedback A,B.
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if the output signal, corresponding to a sinusoidal input £
sin 2 7ft, is (see equation [74-71])

eq = E,sin 27ft + E,sin 47ft + E,sin 67ft + ... (74-78)*

and the rms value of eo is E,. k can be calculated from
measurements of the total rms value E, and the rms value
E,/V2 of the filtered-out basic component obtained via a
suitable filter in series with the output, removing harmon-
ics. [t generally varies with both amplitude E and frequency
f of the input signal.

NON-LINEARITY AT HIGHER FREQUENCIES

The above discussion was based on the properties of a
d-c amplifier at low frequencies. It also holds for a broad-
band amplifier with small phase shift within the part of the
passband containing the main part of the harmonics.

If phase shift occurs, the input-output characteristic
shows a kind of hysteresis loop. Hysteresis, in a general
sense, is present when the input-output relation follows
different paths, in the diagram of output quantity vs. input
quantity for increasing and decreasing input signal (see Fig.
74-28). For a linear amplifier with a sinusoidal input, this
appears as an ellipse in the input-output diagram. This *‘lin-
ear hysteresis” is not a harmonic distortion! When non-lin-
ear effects exist, the above appears as a deformed ellipse or
a closed loop of any shape.

A qualitative study of harmonic distortion with phase
shift, by checking the form of the loop in the input-output
diagram, is admissible only when the input signal is sinus-
oidal. Other waveforms do not generate ellipses even with

linear amplifiers, since the harmonics then already present
in the input signal undergo different phase shifts. Figure 74-
28 shows three cases: a linear circuit with a sinusoidal in-
put, a triangular input and a non-linear circuit with a sinus-
oidal input.

A case considerably worse occurs when the input-output
relation does not immediately form a loop. It may not, after
one cycle, have returned to the starting point and the subse-
quent curves generate a spiral that only asymptotically ap-
proaches a closed loop. This is a case of severe non-linear
distortion with memory effect, so that the state of the cir-
cuit also depends on the past history. Such a case is also
shown in the fourth diagram of Figure 74-28.

BLOCKING

Another effect of non-linear origin, which can cause seri-
ous disturbances, is that a transient, appearing at the input,
may drive the input transistor of the amplifier into cutoff.
The input capacitance to the amplifier becomes charged by
the transient and the input resistance raised due to the cut-
off condition. The latter effect may increase the time con-
stant of input capacitance and resistance by orders of mag-
nitude, which, in turn, can cause the transistor to remain in
the cutoff state for a relatively long period. During this peri-
od, the amplifier is blocked and does not pass signals. The
cure is to reduce input capacitance, reduce the input volt-
age or limit the input signal, e.g., with diodes, so that tran-
sient spikes are clipped.

Another kind of blocking occurs when the input transis-
tor is driven to saturation. Return to normal operating level

Circuit : Loop Input signal
Fig. 74-28.— Input-output relations at higher
i frequencies for a linear circuit (top), and non-linear
15Hz  sinusoid circuits. (Photographed from oscilloscope tracings.)
15k
in 10uf T out
15Hz symmetric triangle
output
1.5ka input
104F 15Hz  sinusoid
2x0A81
(Ge)
1.5kQ
50Hz sinusoid
applied at t=0
24081 10pF 10ka "
(Ge) T _

“The rms value of e, thenis VE, = EZ + B2 +. . .
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from saturation requires a certain time, as the accumulated
base charge in the transistor must be removed. However,
the time period of this blocking is, generally, negligible in
most biomedical applications.

SUMMARY

It has been shown that non-linear effects in the amplifier,
apart from causing deformations of the waveform of the
signal, may distort and add artifacts to the signal spectrum.
These effects can be reduced by choosing appropriate d-c
working points for the transistors and by applying feed-
back. A special effect of the non-linearity caused by cutoff
of a transistor stage is that it may become blocked for cer-
tain time periods following large transient spikes.

Input and Output Impedances

This part will cover the effects of signal source imped-
ance and the loading impedance connected to the amplifier
at the output. The input impedance to an amplifier loads the
signal source; how this will affect amplifier behavior de-
pends on the source impedance. The loading impedance
connected to the amplifier output may influence the output
signal, depending on the output impedance of the amplifier.
The term “loading” refers to the consumption of power that
may be delivered by the source or the amplifier.

THE FILTERING EFFECT OF SOURCE AND
LoaDp IMPEDANCES

Every signal source has a source impedance. As is dis-
cussed in Chapter 69, the source can be represented in ei-
ther of two equivalent ways, as sketched in Figure 74-29,
using an ideal source (voltage source of zero impedance or
current source of infinite impedance) and an ‘“‘output” im-
pedance. Here, we will use the voltage source representa-
tion. Z, is the source impedance, which cannot be circum-
vented i.e., the current necessarily flows through Z_ and
cannot be drawn directly from the ideal source e. If now
the source is loaded by an impedance Z,, connected across
the output, as shown in Figure 74-30, we get the output
voltage
o Z, +Z,
if e is sinusoidal. If it is not sinusoidal, we get the same rela-
tion between the spectra of the signals instead, as discussed
above. For simplicity, sinusoidal signals will be discussed
here. The current becomes:

(74-79)

e

I ig

(.) e -1} 1)

Fig. 74-30. —Effect of loading of the source.

and the power developed in the load

P,=Re(e,i,*) = ReZ (74-81)*

Z+Z

where Re denotes the real part of the complex quantity fol-
lowing it. Writing Z, = R, + jX,and Z_= R+ jX, we find

_ lefR,
° (R,+ R+ (X, +X)»

Impedance matching is defined as the situation in which
the power P, in the load is maximum. Obviously, we should
first make X = —X_ in equation (74-82), removing the second
set of parentheses in the denominator. Differentiating the
remaining expression with respect to R,, one finds a maxi-
mum for R, = R, This is illustrated in Figure 74-31, where
the course for negatlve R, is drawn by a dashed curve; as
such an R, cannot be reallzed with passive components (it is
poss1ble though with active circuits). Hence, maximal
power is obtained when:

(74-82)

Rl = Rs
orz,=Z;  (74-83)t

«f

matching: {
where Z * is the complex conjugate of Z,. If this condition
is fulﬁl]ed the load impedance is said to be matched to the
source.

If one wants to measure the voltage generated in the
source, however, matching is not the ideal situation. From
equation (74-79) we see that, in order to obtain e, = e, we
should have |Z,|>> |Z |. This calls for the use of high-input
impedance amplifiers in many biomedical applications,
where the |Z | itself often is high.

If a current measurement is desired, extraction of the
current delivered by the ideal current source in the alterna-
tive representation in Figure 74-29, the load impedance |Z||
should fulfill |Z,| << |Z|. This rarely is required in biomedi-

e
T Z.+Z, (74-80) cal applications.
Ig
. ", 4
4{ |————¢ ) 4
Fig. 74-29.— Alternative, equivalent representation of
asignal source: ideal voltage source, with output
impedance {left) and ideal current source with output
impedance {(right). + +
e G“ i C) Zs
—d - 4
e=ilg i=ellg

*The complex conjugate of a complex number z = x + ¥ is 2*¥ = x —jy.
This gives zz* = |z|*.
tSee footnote for equation (74-81).
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Fig. 74-31.—Variation of load power with load resistance (assuming
matched reactances). (The dashed curve holds for negative load resis-
tance as can be realized only with special active circuits.)

INPUT CHARACTERISTIC OF THE AMPLIFIER
The load on the signal source is caused by the total input
impedance of the amplifier (including parasitic contribu-
tions such as cable capacitance, cable inductance and leak-
age resistances). This impedance should be adjusted to the
source impedance in one of the three ways mentioned
above (maximal power, maximal voltage or maximal cur-
rent)—in biomedical applications generally for maximal
voltage, i.e., |Z,|>> |Z |. If this is not possible for all relevant
frequencies, i.e., frequencies contained in the main part of
the spectrum of the source signal, the latter signal will be
filtered already at the input to the amplifier, according to
equation (74-79). If the impedances Z, and Z, are known,
compensation can be made for this effect, but Z_ often is
not known in sufficient detail for such a compensation. On
the one hand, biomedical signals generally are of a low-fre-
quency nature, making the adjustment of the input imped-
ance easier. On the other hand, source impedances often
are so high that it is less easy to realize a proper input im-
pedance. Biomedical amplifiers, therefore, often are made
with the highest possible input impedances (for voltage
measurement) in order to accommodate many types of in-
put transducers, electrodes, detectors, etc.

OuTPUT CHARACTERISTICS

The discussion above, in general, also applies to the out-
put of the amplifier, which can be modeled by a source as in
Figure 74-29, subject to the output load attached to the
amplifier. Fortunately, the practical problems are much

1001

smaller here. It is useful to make the output impedance of
the amplifier as low as possible (for voltage measurement)
to allow for as wide a variety of loads as possible.

A SpeciAL KIND OF “MATCHING” FOR
CONSTANT AMPLITUDE RESPONSE
If |Z,|>>|Z,| cannot be enforced (measuring voltage) all
over the relevant frequency band, things are relatively good
if e /e in equation (74-79) is independent of frequency. Put-
ting e /e = constant, we find the condition:
X i X s
R-R (74-84)
or Zs =&. This often is easier to realize than |Z[>|Z|
and gives
__R
"R, +R,
Note, however, that Z, must be known in sufficient detail,
which limits the applicability of this kind of “‘matching” in
biomedical measurements. Actually, it often is impossible
to use it, as Z_ may vary with time and from one application
to another.

e (74-85)

THE USE oF FEEDBACK

Input impedances can be raised and output impedances
lowered by feedback. In the case of negative-voltage feed-
back, we subtract from the source voltage another voltage
that is proportional to the output voltage. For the input
impedance, the situation then can be described as in Figure
74-32, where we find, neglecting load effects on the output,

e

{i, -3 (74-86)
e, = eo(k + Zl> (74-87)

Here, k is a constant. Hence, the effective input impedance
to the amplifier with feedback is:

(4
Zin, et = l_‘ =(1 +kA)Zy,
1

(74-88)

which is larger than Z;,,.

For the output impedance, we may use the representation
of Figure 74-33, where, for simplicity, we neglect load effects
at the input. Here, we find

AZ, A Z,
©TCZ (A +kA)Z, ‘1+kA Z,
¢ Z, +
U1+ Ak
which can be represented, as in Figure 74-34, using an ef-
fective output impedance

(74-89)

V4

Z, =77 (74-90)

Fig. 74-32.—Effect of feedback on input impedance; ke, represents the feedback voltage
added at the input (see Fig. 74-24).
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Fig. 74-33. — Effect of feedback on the output impedance.

Lo eff

r—
L

A +
e
Y 4 fo

Fig. 74-34. —Equivalent circuit on the output side in Figure 74-33.

which is smaller than Z,. Hence, this negative feedback both
raises input impedance and lowers output impedance.

The above-discussed feedback, where the voltage sub-
tracted is proportional to output voltage, is called voltage
Jeedback. 1f the subtracted voltage is made proportional to
output current, it is called current feedback. Applying nega-
tive current feedback, one finds that this raises the input
impedance but also raises the output impedance, the former
also being dependent on the load at the output of the ampli-
fier.

In the above, a voltage proportional to an output quantity
was used as a feedback signal; if, instead, a current is used
as a feedback signal, things are somewhat different. Note
that the commonly used terms ‘“voltage” and “current”
feedback refer to which of these at the amplifier’s output
governs the feedback. Now we will study the effect of dif-
ferent feedback quantities at the input; we will discuss
“feedback voltage” and “‘feedback current.” The feedback
given first above is the effect of a ‘“voltage-feedback-volt-
age.” Below, we will see a “voltage-feedback-current” (a
“current-feedback-current” will have an effect on in-
put impedance that depends on the load on the amplifier,
like the “current-feedback-voltage” mentioned above, and
therefore will not be discussed here).

If a feedback current proportional to the output voltage
is added to the current coming from the source at the input,
as in Figure 74-35, we find:

Z in

Zin, eff — 1 — klAZin
with a constant k,. Hence, in this case, positive feedback
increases input impedance. Obviously, this means an inher-
ent risk for instability. The stability criterion actually
depends on Z_. In principle, infinite Z;,, . is possible in equa-
tion (74-91) if k,AZ;, = 1 in the passband of the arrange-
ment, but, in practice, this may call for unrealizable stabili-

(74-91)

ty requirements on the characteristic outside the passband,
especially as this is positive feedback, although stability
requirements may be fulfilled inside the passband. Further,
in the case when a “feedback voltage” is used, the increase
of input impedance may be limited by practical stability
requirements on roll-offs, although negative feedback there
makes things easier.

NOISE AND IMPEDANCE RELATIONS

Similar to the derivation of an optimal relation between
source and load impedances for maximal power transfer,
leading to impedance matching (equation [74-83]), one can
find an optimal impedance relation at the input for the best
noise figure of the particular source-amplifier arrangement;
this is again related to “‘power economy,” due to the defini-
tion of noise figure. In biomedical applications, one usually
must measure a voltage from a given source where one has
little or no possibility of altering the source impedance. For
“voltage economy,” we found that the input impedance of
the amplifier should be as high as possible; a similar rule
exists for noise ‘‘voltage economy.”

An amplifier may be characterized, in terms of “noisi-
ness,” by referring the noise to the input (as mentioned
above). The general representation then involves both a
noise voltage source in series and a noise current source in
parallel with the input (in which case also a “‘cross power
spectrum’ between the two sources is specified). For sim-
plicity, we will show only the case of a pure voltage source,
as sketched in Figure 74-36, where e, is the noise voltage
generated in the source, which we assume cannot be influ-
enced, and e, is the amplifier noise referred to the input.
For this case, we find

in V4

eo =A A Zs(e + e, + enz—;>
As Z_and e, are given, we can improve the signal-to-noise
ratio at the amplifier output only by choosing an amplifier
having as small a value as possible of ¢,/Z;,, unless we ap-
ply feedback. Feedback may lead to an improvement, rais-
ing Z;,, but then noise sources in the feedback network also
add to total noise at the input. Therefore, feedback may in-
stead occasionally make things worse with respect to noise.
This must be judged in each individual case. As a general
rule, it is advisable first to choose an amplifier with the
highest Z;,/e, in the important frequency range, and then to
see if feedback may bring about further improvement.

In the general case with both a voltage and a current
source in the representation at the output, we also find that
noise sources should be as small and input impedance as
high as possible. If i, is the noise current source, we should
have (i, + ¢,/Z;,) as small as possible.

(74-92)

“BOOTSTRAPPING”’ OF CABLE CAPACITANCE

When a long cable connects source and amplifier, it usu-
ally is shielded to reduce pickup of power-line hum or other
interfering signals. (Magnetically induced interference still

Fig. 74-35. —Influence of a feedback current.
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Fig. 74-36.—Influence of source impedance on signal-to-noise ratio;
e, s the source noise and e, is the amplifier noise, referred to the input.

may occur, as well as that due to movement of the cable in
the static magnetic field of the earth, or the electrostatic
charging and discharging in the insulation caused by friction
between it and the central lead wire.) Such a coaxial cable
has a relatively high capacitance between lead and shield; if
the latter is grounded, it may cause deterioration of the in-
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put impedance, as seen from the source. One useful method
to considerably reduce this effect is to connect the shield to
a signal source so that it receives a reproduction of the
amplifier’s input voltage. This signal can be obtained from
the output of the first stage if it has unity amplification. For
small signals, it is better to have high amplification in the
first stage, then reduce the signal level again to the input
level (e.g., with a voltage divider) and then apply it to the
shield. The output impedance of this connection presented
to the shield must be much lower than the amplifier’s
source and input impedances. A second, grounded, shield
may be used outside or around the ungrounded one.

This arrangement often is called a “‘hot,” “driven” or
“pumped” shield and reduces the effect of the cable capaci-
tance by keeping the voltage over it at zero, thus eliminat-
ing capacitive currents. This is a special type of feedback,
often called *‘bootstrapping.” The effect is less useful if the
shield does not enclose the lead.

A number of errors in the type setting have been corrected.

At many locations, the typesetter has mistaken a 1 for an 1 (lower case L) in the formulae.

These locations are too many to search for and correct (in which process some would have
been overlooked, anyway). Therefore, where for example I/f should read 1/f, and so on, the

reader will surely notice it...

The article was published as Chapter 74 in Medical Engineering, edited by
Charles D. Ray on pp. 974 — 1003, Year Book Medical Publishers, Inc., Chicago,

1974.



